Skip to main content
Log in

Comparing the Recalcitrance of Eucalyptus, Pine, and Switchgrass Using Ionic Liquid and Dilute Acid Pretreatments

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Pine, eucalyptus, and switchgrass were evaluated for the production of fermentable sugars via ionic liquid and dilute acid pretreatments and subsequent enzymatic hydrolysis. The results show that among the three feedstocks, switchgrass has the highest sugar yields and faster hydrolysis rates for both pretreatment technologies by achieving 48 % (dilute acid) and 96 % (ionic liquid) sugar yields after 24 h. Of the two wood species, eucalyptus has a higher and faster sugar recovery after ionic liquid pretreatment than pine (93 vs. 62 % in 24 h) under 160 °C for 3 h with [C2mim][OAc]. Pretreatment of pine and eucalyptus is observed to be ineffective under 1.2 % dilute acid condition and 160 °C for 15 min, indicating that further enhancement of reaction temperature or acid concentration is necessary to increase the digestibility of pretreated materials. Raman spectroscopy data show that the extent of lignin depolymerization that occurs during pretreatment also varies for the three different feedstocks. Under similar hemicellulose removal conditions, lignin removal in ionic liquid pretreatment can help improve cellulose conversion. This finding may help explain the observed variation in the saccharification yields and kinetics. These results indicate that ionic liquid pretreatment not only improved saccharification over dilute acid for all three feedstocks but also better dealt with the differences among them, suggesting better tolerance to feedstock variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807

    Article  PubMed  CAS  Google Scholar 

  2. Simmons BA, Loque D, Blanch HW (2008) Next-generation biomass feedstocks for biofuel production. Genome Biol 9(12):242

    Article  PubMed  Google Scholar 

  3. McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28(6):515–535

    Article  Google Scholar 

  4. Johnson JM, Coleman MD, Gresch R, Jaradat A, Mitchell R, Reicosky D et al (2007) Biomass–bioenergy crops in the United States: a changing paradigm. Am J Plant Sci Biotechnol 1(1):1–28

    Google Scholar 

  5. Dickmann DI (2006) Silviculture and biology of short-rotation woody crops in temperate regions: then and now. Biomass Bioenergy 30(8–9):696–705

    Article  Google Scholar 

  6. Rockwood DL, Rudie AW, Ralph SA, Zhu JY, Winandy JE (2008) Energy product options for Eucalyptus species grown as short rotation woody crops. Int J Mol Sci 9(8):1361–1378

    Article  PubMed  CAS  Google Scholar 

  7. Yu Q, Zhuang XS, Yuan ZH, Wang Q, Qi W, Wang W et al (2010) Two-step liquid hot water pretreatment of Eucalyptus grandis to enhance sugar recovery and enzymatic digestibility of cellulose. Bioresour Technol 101(13):4895–4899

    Article  PubMed  CAS  Google Scholar 

  8. Gonzalez R, Treasure T, Phillips R, Jameel H, Saloni D, Abt R et al (2011) Converting Eucalyptus biomass into ethanol: financial and sensitivity analysis in a co-current dilute acid process. Part II. Biomass Bioenergy 35(2):767–772

    Article  CAS  Google Scholar 

  9. Gonzalez R, Phillips R, Saloni D, Jameel H, Abt R, Pirraglia A et al (2011) Biomass to energy in the southern United States: supply chain and delivered cost. Bioresources 6(3):2954–2976

    CAS  Google Scholar 

  10. Zheng Y, Pan ZL, Zhang RH, Wang DH (2009) Enzymatic saccharification of dilute acid pretreated saline crops for fermentable sugar production. Appl Energ 86(11):2459–2465

    Article  CAS  Google Scholar 

  11. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY et al (2009) Comparative sugar recovery and fermentation data following pretreatment of poplar wood by leading technologies. Biotechnol Progr 25(2):333–339

    Article  CAS  Google Scholar 

  12. Dien BS, Jung HJG, Vogel KP, Casler MD, Lamb JFS, Iten L et al (2006) Chemical composition and response to dilute-acid pretreatment and enzymatic saccharification of alfalfa, reed canarygrass, and switchgrass. Biomass Bioenergy 30(10):880–891

    Article  CAS  Google Scholar 

  13. Sun Y, Cheng JJ (2005) Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol 96(14):1599–1606

    Article  PubMed  CAS  Google Scholar 

  14. Redding AP, Wang ZY, Keshwani DR, Cheng JJ (2011) High temperature dilute acid pretreatment of coastal Bermuda grass for enzymatic hydrolysis. Bioresour Technol 102(2):1415–1424

    Article  PubMed  CAS  Google Scholar 

  15. Kumar R, Mago G, Balan V, Wyman CE (2009) Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies. Bioresour Technol 100(17):3948–3962

    Article  PubMed  CAS  Google Scholar 

  16. Kumar R, Wyman CE (2009) Effect of additives on the digestibility of corn stover solids following pretreatment by leading technologies. Biotechnol Bioeng 102(6):1544–1557

    Article  PubMed  CAS  Google Scholar 

  17. Qi BK, Chen XR, Wan YH (2010) Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production. Bioresour Technol 101(13):4875–4883

    Article  PubMed  CAS  Google Scholar 

  18. Kootstra AMJ, Beeftink HH, Scott EL, Sanders JPM (2009) Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw. Biochem Eng J 46(2):126–131

    Article  CAS  Google Scholar 

  19. Tian S, Zhu W, Gleisner R, Pan XJ, Zhu JY (2011) Comparisons of SPORL and dilute acid pretreatments for sugar and ethanol productions from aspen. Biotechnol Progr 27(2):419–427

    Article  CAS  Google Scholar 

  20. Zhu JY, Gleisner R, Scott CT, Luo XL, Tian S (2011) High titer ethanol production from simultaneous enzymatic saccharification and fermentation of aspen at high solids: a comparison between SPORL and dilute acid pretreatments. Bioresour Technol 102(19):8921–8929

    Article  PubMed  CAS  Google Scholar 

  21. Zhu J, Verrill S, Liu H, Herian V, Pan X, Rockwood D (2011) On polydispersity of plant biomass recalcitrance and its effects on pretreatment optimization for sugar production. Bioenergy Research 4(3):201–210

    Article  Google Scholar 

  22. Sannigrahi P, Ragauskas AJ, Miller SJ (2008) Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. Bioenergy Research 1(3–4):205–214

    Article  Google Scholar 

  23. Zhu W, Zhu JY, Gleisner R, Pan XJ (2010) On energy consumption for size-reduction and yields from subsequent enzymatic saccharification of pretreated lodgepole pine. Bioresour Technol 101(8):2782–2792

    Article  PubMed  CAS  Google Scholar 

  24. Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M et al (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101(13):4900–4906

    Article  PubMed  CAS  Google Scholar 

  25. Dadi AP, Varanasi S, Schall CA (2006) Enhancement of cellulose saccharification kinetics using an ionic liquid pretreatment step. Biotechnol Bioeng 95(5):904–910

    Article  PubMed  CAS  Google Scholar 

  26. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376

    Article  PubMed  CAS  Google Scholar 

  27. Sun N, Rahman M, Qin Y, Maxim ML, Rodriguez H, Rogers RD (2009) Complete dissolution and partial delignification of wood in the ionic liquid 1-ethyl-3-methylimidazolium acetate. Green Chem 11(5):646–655

    Article  CAS  Google Scholar 

  28. Li C, Cheng G, Balan V, Kent MS, Ong M, Chundawat SPS et al (2011) Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresour Technol 102(13):6928–6936

    Article  PubMed  CAS  Google Scholar 

  29. Singh S, Simmons BA, Vogel KP (2009) Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnol Bioeng 104(1):68–75

    Article  PubMed  CAS  Google Scholar 

  30. Tan SSY, MacFarlane DR, Upfal J, Edye LA, Doherty WOS, Patti AF et al (2009) Extraction of lignin from lignocellulose at atmospheric pressure using alkylbenzenesulfonate ionic liquid. Green Chem 11(3):339–345

    Article  CAS  Google Scholar 

  31. Chen M, Zhao J, Xia L (2009) Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenergy 33(10):1381–1385

    Article  CAS  Google Scholar 

  32. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol 96(18):2026–2032

    Article  PubMed  CAS  Google Scholar 

  33. Lloyd TA, Wyman CE (2005) Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour Technol 96(18):1967–1977

    Article  PubMed  CAS  Google Scholar 

  34. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2004) Determination of structural carbohydrates and lignin in biomass. LAP-002 NREL analytical procedure. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  35. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D (2004) Determination of ash in biomass. LAP-005 NREL analytical procedure. National Renewable Energy Laboratory, Golden, CO

    Google Scholar 

  36. Pandey KK, Pitman AJ (2003) FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int Biodeter Biodegr 52(3):151–160

    Article  CAS  Google Scholar 

  37. Pandey KK, Pitman AJ (2004) Examination of the lignin content in a softwood and a hardwood decayed by a brown-rot fungus with the acetyl bromide method and Fourier transform infrared spectroscopy. J Polymer Sci Part a-Polymer Chem 42(10):2340–2346

    Article  CAS  Google Scholar 

  38. Fukushima RS, Hatfield RD (2004) Comparison of the acetyl bromide spectrophotometric method with other analytical lignin methods for determining lignin concentration in forage samples. J Agric Food Chem 52(12):3713–3720

    Article  PubMed  CAS  Google Scholar 

  39. Sun L, Varanasi P, Yang F, Loque D, Simmons BA, Singh S (2012) Rapid determination of syringyl:guaiacyl ratios using FT–Raman spectroscopy. Biotechnol Bioeng 109:647–656

    Article  PubMed  CAS  Google Scholar 

  40. Arora R, Manisseri C, Li C, Ong M, Scheller HV, Vogel K et al (2010) Monitoring and analyzing process streams towards understanding ionic liquid pretreatment of switchgrass (Panicum virgatum L.). Bioenergy Research 3:134–145

    Article  Google Scholar 

  41. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    Article  PubMed  CAS  Google Scholar 

  42. Kishimoto T, Chiba W, Saito K, Fukushima K, Uraki Y, Ubukata M (2010) Influence of syringyl to guaiacyl ratio on the structure of natural and synthetic lignins. J Agric Food Chem 58(2):895–901

    Article  PubMed  CAS  Google Scholar 

  43. Sun L, Simmons BA, Singh S (2011) Understanding tissue specific compositions of bioenergy feedstocks through hyperspectral Raman imaging. Biotechnol Bioeng 108(2):286–295

    Article  PubMed  CAS  Google Scholar 

  44. Mann D, Labbé N, Sykes R, Gracom K, Kline L, Swamidoss I et al (2009) Rapid assessment of lignin content and structure in switchgrass (Panicum virgatum L.) grown under different environmental conditions. Bioenergy Research 2(4):246–256

    Article  Google Scholar 

  45. Obst JR, Landucci LL (1986) The syringyl content of softwood lignin. J Wood Chem Tech 6(3):311–327

    Article  CAS  Google Scholar 

  46. Rodrigues J, Meier D, Faix O, Pereira H (1999) Determination of tree to tree variation in syringyl/guaiacyl ratio of Eucalyptus globulus wood lignin by analytical pyrolysis. J Anal Appl Pyrol 48(2):121–128

    Article  CAS  Google Scholar 

  47. Nuopponen MH, Wikberg HI, Birch GM, Jaaskelainen AS, Maunu SL, Vuorinen T et al (2006) Characterization of 25 tropical hardwoods with Fourier transform infrared, ultraviolet resonance Raman, and C-13-NMR cross-polarization/magic-angle spinning spectroscopy. J Appl Polym Sci 102(1):810–819

    Article  CAS  Google Scholar 

  48. Porchia AC, Sorensen SO, Scheller HV (2002) Arabinoxylan biosynthesis in wheat. Characterization of arabinosyltransferase activity in Golgi membranes. Plant Physiol 130(1):432–441

    Article  PubMed  CAS  Google Scholar 

  49. Wang ZJ, Zhu JY, Zalesny RS, Chen KF (2012) Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel 95(1):606–614

    Article  CAS  Google Scholar 

  50. Zhu Z, Sathitsuksanoh N, Vinzant T, Schell DJ, McMillan JD, Zhang YH (2009) Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: enzymatic hydrolysis, supramolecular structure, and substrate accessibility. Biotechnol Bioeng 103(4):715–724

    Article  PubMed  CAS  Google Scholar 

  51. Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–95

    Article  PubMed  CAS  Google Scholar 

  52. Brennan TCR, Datta S, Blanch HW, Simmons BA, Holmes BM (2010) Recovery of sugars from ionic liquid biomass liquor by solvent extraction. Bioenergy Research 3(2):123–133

    Article  Google Scholar 

  53. Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci USA 107(10):4516–4521

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Henrik V. Scheller and Dr. Ning Sun for reviewing this manuscript. This work was part of the DOE Joint BioEnergy Institute (http://www.jbei.org) supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seema Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Sun, L., Simmons, B.A. et al. Comparing the Recalcitrance of Eucalyptus, Pine, and Switchgrass Using Ionic Liquid and Dilute Acid Pretreatments. Bioenerg. Res. 6, 14–23 (2013). https://doi.org/10.1007/s12155-012-9220-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-012-9220-4

Keywords

Navigation