Skip to main content
Log in

In Situ Observation of the Agglomeration of MgO–Al2O3 Inclusions on the Surface of a Molten GCr15-Bearing Steel

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

A Publisher Correction to this article was published on 14 June 2023

This article has been updated

Abstract

In the current study, thermodynamic calculations and laboratory experiments were conducted to investigate the evolution of MgO–Al2O3 inclusions in a GCr15-bearing steel with varied Mg contents. Inclusions were transformed from Al2O3 to MgO–Al2O3 to MgO in the steel with the increase of Mg content from 3.9 to 61.0 ppm. The agglomeration of MgO–Al2O3 inclusions was in situ observed using the confocal scanning laser microscopy. With the increase of the MgO content in MgO–Al2O3 inclusions, the collision tendency of MgO–Al2O3 complex inclusions became weaker. The agglomeration attraction force of MgO–Al2O3 inclusions was calculated using Newton’s second law, which was obviously related to the distance between inclusions and the type of inclusions. With the decrease of the distance between inclusions, the attractive force between Al2O3 inclusions increased from 1.0 × 10–15 to 1.0 × 10–13 N, while it was 1.0 × 10–16 to 1.0 × 10–14 N for MgO–Al2O3 complex inclusions and 1.0 × 10–17 to 1.0 × 10–15 N for pure MgO inclusions, respectively. The height difference of the molten steel around the inclusion pushed two inclusions closer. The impelling effect of the molten steel on inclusions became stronger with the increase of the height difference. Based on the calculation of the simplified Kralchevsky–Paunov model and experimental results, the capillary attraction between inclusion pairs was Al2O3 > MgO–Al2O3 > MgO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Change history

References

  1. L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271–91.

    Article  CAS  Google Scholar 

  2. L. Zhang and B.G. Thomas: Metall. Mater. Trans. B, 2006, vol. 37, pp. 733–61.

    Article  Google Scholar 

  3. J. Telesman, T.P. Gabb, P.T. Kantzos, P.J. Bonacuse, R.L. Barrie, and C.A. Kantzos: Int. J. Fatigue, 2021, vol. 142, pp. 1–8.

    Article  Google Scholar 

  4. H. Wang, J. Li, C.B. Shi, and J. Li: Ironmak. Steelmak., 2017, vol. 44, pp. 128–33.

    Article  CAS  Google Scholar 

  5. J. Guo, S. Cheng, H. Guo, and Y. Mei: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 280–87.

    Article  CAS  Google Scholar 

  6. L. Wang, B. Song, Z. Yang, X. Cui, Z. Liu, W. Cheng, and J. Mao: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 1940–48.

    Article  CAS  Google Scholar 

  7. L. Xu, J. Yang, R. Wang, W. Wang, and Y. Wang: J. Iron. Steel Res. Int., 2018, vol. 25, pp. 433–41.

    Article  Google Scholar 

  8. Y. Xu, Z. Chen, M. Gong, D. Shu, Y. Tian, and X. Yuan: J. Iron. Steel Res. Int., 2014, vol. 21, pp. 583–88.

    Article  CAS  Google Scholar 

  9. W. Wang, H. Zhu, M. Song, J. Li, and Z. Xue: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 1464–73.

    Article  CAS  Google Scholar 

  10. Y. Wang, W. Li, and W. Yang: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 175–85.

    Article  CAS  Google Scholar 

  11. Z. Wang, Y. Guan, and H. Luo: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 1153–63.

    Article  Google Scholar 

  12. Z. Yu and C. Liu: Metall. Mater. Trans. B, 2019, vol. 50, pp. 772–81.

    Article  CAS  Google Scholar 

  13. T. Zhang, D. Wang, and M. Jiang: J. Iron. Steel Res. Int., 2014, vol. 21, pp. 1073–80.

    Article  CAS  Google Scholar 

  14. T. Zhang, D. Wang, C. Liu, M. Jiang, M. Lv, B. Wang, and S. Zhang: J. Iron Steel Res. Int., 2014, vol. 21, pp. 99–103.

    Article  CAS  Google Scholar 

  15. J. Xu, Q. Yang, J. Cheng, Z. Huang, J. An, and J. Fu: in Proceedings of the 2017 International Conference on Manufacturing Engineering and Intelligent Materials (ICMEIM 2017). 2017, pp. 511–15.

  16. L. Cao, D. Shang, X. Ai, P. Jin, Y. Xiao, G. Wang, and C. Liu: J. Iron. Steel Res. Int., 2021, vol. 28, pp. 402–12.

    Article  CAS  Google Scholar 

  17. L. Cao, G. Wang, Y. Xiao, and R. Yang: J. Iron. Steel Res. Int., 2022, vol. 29, pp. 925–38.

    Article  CAS  Google Scholar 

  18. H. Tozawa, Y. Kato, K. Sorimachi, and T. Nakanishi: ISIJ Int., 1999, vol. 39, pp. 426–34.

    Article  CAS  Google Scholar 

  19. Q. Yue, H. Chen, C. Yao, D. Lu, J. Zhang, and F. Huang: J. Iron Steel Res., 2012, vol. 24, pp. 1–5.

    CAS  Google Scholar 

  20. C. Gu, W. Liu, J. Lian, and Y. Bao: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 826–34.

    Article  Google Scholar 

  21. J. Wang, L. Zhang, G. Cheng, Q. Ren, and Y. Ren: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 1298–308.

    Article  Google Scholar 

  22. W. Xiao, Y. Bao, C. Gu, M. Wang, Y. Liu, Y. Huang, and G. Sun: Int. J. Miner. Metall. Mater., 2021, vol. 28, pp. 804–15.

    Article  Google Scholar 

  23. H. Shibata, H. Yin, S. Yoshinaga, T. Emi, and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 149–56.

    Article  CAS  Google Scholar 

  24. H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 946–55.

    Article  CAS  Google Scholar 

  25. H. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol. 37, pp. 936–45.

    Article  CAS  Google Scholar 

  26. H. Shibata, H. Yin, T. Emi, and J.C. Earnshaw: Philos. Trans.: Math. Phys. Eng. Sci., 1998, vol. 356, pp. 957–66.

    Article  CAS  Google Scholar 

  27. G. Liang, C. Wang, and Y. Fang: Acta Metall. Sin., 2006, vol. 42, pp. 708–14.

    CAS  Google Scholar 

  28. S. Kimura, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32, pp. 79–85.

    Article  Google Scholar 

  29. S. Kimura, Y. Nabeshima, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2000, vol. 31, pp. 1013–21.

    Article  Google Scholar 

  30. K. Nakajima and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32, pp. 629–41.

    Article  Google Scholar 

  31. J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson: Mater. Sci. Eng. A, 2008, vol. 495, pp. 316–19.

    Article  Google Scholar 

  32. J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson: Ironmak. Steelmak., 2008, vol. 35, pp. 589–99.

    Article  Google Scholar 

  33. S. Lee, C. Tse, K. Yi, P. Misra, V. Chevrier, C. Orrling, S. Sridhar, and A. Cramb: J. Non-Cryst. Solids, 2001, vol. 282, pp. 41–8.

    Article  CAS  Google Scholar 

  34. B. Coletti, B. Blanpain, S. Vantilt, and S. Sridhar: Metall. Mater. Trans. B, 2003, vol. 34, pp. 533–38.

    Article  Google Scholar 

  35. J. Appelberg, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson: Mater. Sci. Eng. A, 2007, vol. 495, pp. 330–34.

    Article  Google Scholar 

  36. Y. Wang and C. Liu: Metall. Mater. Trans. B, 2020, vol. 51, pp. 2585–95.

    Article  Google Scholar 

  37. W. Bin and S. Bo: Steel Res. Int., 2012, vol. 83, pp. 488–95.

    Article  Google Scholar 

  38. Q. Tian, G. Wang, D. Shang, H. Lei, X. Yuan, Q. Wang, and J. Li: Metall. Mater. Trans. B, 2018, vol. 49, pp. 3137–50.

    Article  CAS  Google Scholar 

  39. P. Misra, S. Sridhar, and A.W. Cramb: Metall. Mater. Trans. B, 2001, vol. 32, pp. 963–67.

    Article  Google Scholar 

  40. X. Shao, X. Wang, M. Jiang, W. Wang, F. Huang, and Y. Ji: Acta Metall. Sin., 2011, vol. 47, pp. 1210–15.

    CAS  Google Scholar 

  41. P.A. Kralchevsky, V.N. Paunov, N.D. Denkov, I.B. Ivanov, and K. Nagayama: J. Colloid Interface Sci., 1993, vol. 155, pp. 420–37.

    Article  CAS  Google Scholar 

  42. V.N. Paunov, P.A. Kralchevsky, N.D. Denkov, and K. Nagayama: J. Colloid Interface Sci., 1993, vol. 157, pp. 100–12.

    Article  CAS  Google Scholar 

  43. W. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans., 2017, vol. 48, pp. 2092–103.

    Article  CAS  Google Scholar 

  44. W. Mu, N. Dogan, and K.S. Coley: JOM, 2018, vol. 70, pp. 1199–209.

    Article  CAS  Google Scholar 

  45. W. Mu, N. Dogan, and K.S. Coley: J. Mater. Sci., 2018, vol. 53, pp. 13203–15.

    Article  CAS  Google Scholar 

  46. W. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48B, pp. 2379–88.

    Article  Google Scholar 

  47. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton, and S. Petersen: Calphad, 2002, vol. 26, pp. 189–228.

    Article  CAS  Google Scholar 

  48. M. Jiang, X. Wang, J. Pak, and P. Yuan: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1656–65.

    Article  CAS  Google Scholar 

  49. K. Miao, A. Haas, M. Sharma, W. Mu, and N. Dogan: Metall. Mater. Trans. B, 2018, vol. 49, pp. 1612–23.

    Article  CAS  Google Scholar 

  50. S.K. Michelic, U.D. Salgado, and C. Bernhard: IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 143, pp. 1–0.

    Article  Google Scholar 

  51. M. Sharma, W. Mu, and N. Dogan: JOM, 2018, vol. 70, pp. 1220–24.

    Article  CAS  Google Scholar 

  52. S. Vantilt, B. Coletti, B. Blanpain, J. Fransaer, P. Wollants, and S. Sridhar: ISIJ Int., 2004, vol. 44, pp. 1–0.

    Article  CAS  Google Scholar 

  53. Y. Kang, B. Sahebkar, P.R. Scheller, K. Morita, and D. Sichen: Metall. Mater. Trans., 2011, vol. 42, pp. 522–34.

    Article  CAS  Google Scholar 

  54. A. Dani, G. Keiser, M.S. Yeganeh, and C. Maldarelli: Langmuir, 2015, vol. 31, pp. 13290–302.

    Article  CAS  Google Scholar 

  55. P.A. Kralchevsky and K. Nagayama: Adv. Coll. Interface Sci., 2000, vol. 85, pp. 145–92.

    Article  CAS  Google Scholar 

  56. E. Kapilashrami, A. Jakobsson, S. Seetharaman, and A.K. Lahiri: Metall. Mater. Trans. B, 2003, vol. 34, pp. 193–99.

    Article  Google Scholar 

  57. N. Fukami, R. Wakamatsu, N. Shinozaki, and K. Wasai: Mater. Trans., 2009, vol. 50, pp. 2552–56.

    Article  CAS  Google Scholar 

  58. C. Xuan, H. Shibata, S. Sukenaga, P.G. Jönsson, and K. Nakajima: ISIJ Int., 2015, vol. 55, pp. 1882–90.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Nature Science Foundation of China (No. U22A20171 and 51874032). The authors are also grateful for support from the High Steel Center (HSC) at North China University of Technology and University of Science and Technology Beijing (USTB).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Ren or Lifeng Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Ren, C., Ren, Y. et al. In Situ Observation of the Agglomeration of MgO–Al2O3 Inclusions on the Surface of a Molten GCr15-Bearing Steel. Metall Mater Trans B 54, 1159–1173 (2023). https://doi.org/10.1007/s11663-023-02751-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-023-02751-2

Navigation