Skip to main content
Log in

In Situ Observation of Calcium Aluminate Inclusions Dissolution into Steelmaking Slag

  • Topical Collection: Advances in Materials Manufacturing and Processing
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The dissolution rate of calcium aluminate inclusions in CaO-SiO2-Al2O3 slags has been studied using confocal scanning laser microscopy (CSLM) at elevated temperatures: 1773 K, 1823 K, and 1873 K (1500 °C, 1550 °C, and 1600 °C). The inclusion particles used in this experimental work were produced in our laboratory and their production technique is explained in detail. Even though the particles had irregular shapes, there was no rotation observed. Further, the total dissolution time decreased with increasing temperature and decreasing SiO2 content in the slag. The rate limiting steps are discussed in terms of shrinking core models and diffusion into a stagnant fluid model. It is shown that the rate limiting step for dissolution is mass transfer in the slag at 1823 K and 1873 K (1550 °C and 1600 °C). Further investigations are required to determine the dissolution mechanism at 1773 K (1500 °C). The calculated diffusion coefficients were inversely proportional to the slag viscosity and the obtained values for the systems studied ranged between 5.64 × 10−12 and 5.8 × 10−10 m2/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 1 K. Kawakami, T. Taniguchi, and K. Nakashima: Tetsu-to-Hagane, 2007, vol. 93, pp. 743–52.

    Article  Google Scholar 

  2. 2 S. Yang, L. Zhang, L. Sun, J. Li, and K.D. Peaslee: Iron Steel Technol., 2012, vol. 9, pp. 245–58.

    Google Scholar 

  3. 3 S.K. Choudhary and A. Ghosh: ISIJ Int., 2008, vol. 48, pp. 1552–9.

    Article  Google Scholar 

  4. 4 S. Sridhar and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 406–10.

    Article  Google Scholar 

  5. 5 M. Valdez, K. Prapakorn, A.W. Cramb, and S. Sridhar: Ironmak. Steelmak., 2002, vol. 29, pp. 47–52.

    Article  Google Scholar 

  6. 6 B.G. Thomas and L. Zhang: Rev. Lit. Arts Am., 2001, vol. 41, pp. 1181–93.

    Google Scholar 

  7. 7 L. Jonsson and P. Jönsson: ISIJ Int., 1996, vol. 36, pp. 1127–34.

    Article  Google Scholar 

  8. 8 M. Hallberg, P.G. Jönsson, T.L.I. Jonsson, and R. Eriksson: Scand. J. Metall., 2005, vol. 34, pp. 41–56.

    Article  Google Scholar 

  9. Y. Miki, H. Kitaoka, T. Sakuraya, and T. Fujii: ISIJ Int., 1992, vol. 32, pp. 142–49.

    Article  Google Scholar 

  10. 10 J. Liu, F. Verhaeghe, M. Guo, B. Blanpain, and P. Wollants: J. Am. Ceram. Soc., 2007, vol. 90, pp. 3818–24.

    Google Scholar 

  11. 11 K.W. Yi, C. Tse, J. H. Park, M. Valdez, A.W. Cramb, and S. Sridhar: Scand. J. Metall., 2003, vol. 32, pp. 177–84.

    Article  Google Scholar 

  12. 12 M. Valdez, K. Prapakorn, A.W. Cramb, and S. Seetharaman: Steel Res., 2001, vol. 72, pp. 291–7.

    Article  Google Scholar 

  13. B.J. Monaghan, S.A. Nightingale, L. Chen, and G.A. Brooks: in International Conference on Molten Slags Fluxes and Salts, 2004, pp. 585–94.

  14. 14 B.J. Monaghan, L. Chen, and J. Sorbe: Ironmak. Steelmak., 2005, vol. 32, pp. 258–64.

    Article  Google Scholar 

  15. 15 B.J. Monaghan and L. Chen: Ironmak. Steelmak., 2006, vol. 33, pp. 323–30.

    Article  Google Scholar 

  16. 16 X. Yu, R.J. Pomfret, and K.S. Coley: Metall. Mater. Trans. B, 1997, vol. 28, pp. 275–9.

    Article  Google Scholar 

  17. 17 K.H. Sandhage and G.J. Yurek: J. Am. Ceram. Soc., 1991, vol. 74, pp. 1941–54.

    Article  Google Scholar 

  18. 18 S. Taira, K. Nakashima, and K. Mori: ISIJ Int., 1993, vol. 33, pp. 116–23.

    Article  Google Scholar 

  19. 19 K.H. Sandhage and G.J. Yurek: J. Am. Ceram. Soc., 1988, vol. 71, pp. 478–89.

    Article  Google Scholar 

  20. 20 K.H. Sandhage and G.J. Yurek: J. Am. Ceram. Soc., 1990, vol. 73, pp. 3633–42.

    Article  Google Scholar 

  21. 21 K.H. Sandhage and G.J. Yurek: J. Am. Ceram. Soc., 1990, vol. 73, pp. 3643–9.

    Article  Google Scholar 

  22. 22 H. Chikama, H. Shibata, T. Emi, and M. Suzuki: Mater. Trans., 1996, vol. 37, pp. 620–6.

    Article  Google Scholar 

  23. 23 H. Shibata, Y. Arai, M. Suzuki, and T. Emi: Metall. Mater. Trans. B, 2000, vol. 31, pp. 981–91.

    Article  Google Scholar 

  24. H. Shibata, H. Yin, S. Yoshinaga, T. Emi, and M. Suzuki: ISIJ Int., 1998, vol. 38, pp. 149–56.

    Article  Google Scholar 

  25. 25 B. Coletti, B. Blanpain, S. Vantilt, and S. Sridhar: Metall. Mater. Trans. B, 2003, vol. 34, pp. 533–8.

    Article  Google Scholar 

  26. Y. Kang, B. Sahebkar, P.R. Scheller, K. Morita, and D. Sichen: Metall. Mater. Trans. B Process Metall. Mater. Process. Sci., 2011, vol. 42, pp. 522–34.

    Article  Google Scholar 

  27. 27 P. Misra, V. Chevrier, S. Sridhar, and A.W. Cramb: Metall. Mater. Trans. B, 2000, vol. 31, pp. 1135–9.

    Article  Google Scholar 

  28. 28 C. Orrling, S. Sridhar, and A.W. Cramb: ISIJ Int., 2000, vol. 40, pp. 877–85.

    Article  Google Scholar 

  29. W. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2092–103.

    Article  Google Scholar 

  30. W. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, 2017, vol. 48, pp. 2379–88.

    Article  Google Scholar 

  31. 31 B.J. Monaghan and L. Chen: J. Non. Cryst. Solids, 2004, vol. 347, pp. 254–61.

    Article  Google Scholar 

  32. M. Lind and L. Holappa: Metall. Mater. Trans. B, 2010, vol. 41, pp. 359–66.

    Article  Google Scholar 

  33. M.W. Chapman: University of Wollongong, 2009.

  34. 34 S. Jonas, F. Nadachowski, and D. Szwagierczak: Ceram. Int., 1998, vol. 24, pp. 211–6.

    Article  Google Scholar 

  35. 35 S. Jonas, F. Nadachowski, and D. Szwagierczak: Ceram. Int., 1999, vol. 25, pp. 77–84.

    Article  Google Scholar 

  36. W.D. Callister: Materials Science and Engineering an Introduction, 2007.

  37. 37 G. Fiquet, P. Richet, and G. Montagnac: Phys. Chem. Miner., 1999, vol. 27, pp. 103–11.

    Article  Google Scholar 

  38. 38 D. Yang, X. Wang, G. Yang, P. Wei, and J. He: Steel Res. Int., 2014, vol. 85, pp. 1517–24.

    Article  Google Scholar 

  39. N. Verma, P.C. Pistorius, R.J. Fruehan, M.S. Potter, H.G. Oltmann, and E.B. Pretorius: Metall. Mater. Trans. B, 2012, vol. 43, pp. 830–40.

    Article  Google Scholar 

  40. 40 V.D. Eisenhuttenleute, ed.: Slag Atlas, 2nd edn., Verlag Stahleisen GmbH, Dusseldorf, 1995.

    Google Scholar 

  41. O. Levenspiel: Chemical Reaction Engineering, 3rd edn., Wiley, New York, 1998, pp. 566–88.

    Google Scholar 

  42. 42 S.H. Lee, C. Tse, K.W. Yi, P. Misra, V. Chevrier, C. Orrling, S. Sridhar, and A.W. Cramb: J. Non Cryst. Solids, 2001, vol. 282, pp. 41–8.

    Article  Google Scholar 

  43. 43 F.J. Vermolen, C. Vuik, E. Javierre, and S. Van Der Zwaag: Nonlinear Anal. Model. Control, 2005, vol. 10, pp. 257–92.

    Google Scholar 

  44. 44 J.Y. Choi, H.G. Lee, and J.S. Kim: ISIJ Int., 2002, vol. 42, pp. 852–60.

    Article  Google Scholar 

  45. 45 J. Liu, M. Guo, P.T. Jones, F. Verhaeghe, B. Blanpain, and P. Wollants: J. Eur. Ceram. Soc., 2007, vol. 27, pp. 1961–72.

    Article  Google Scholar 

  46. 46 P. Yan, B.A. Webler, P.C. Pistorius, and R.J. Fruehan: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2414–8.

    Article  Google Scholar 

  47. 47 R.J. Aguerre, J.F. Gabitto, and J. Chirife: Int. J. Food Sci. Technol., 1985, vol. 20, pp. 623–9.

    Article  Google Scholar 

  48. 48 S. Feichtinger, S.K. Michelic, Y.B. Kang, and C. Bernhard: J. Am. Ceram. Soc., 2014, vol. 97, pp. 316–25.

    Article  Google Scholar 

  49. 49 S. Michelic, J. Goriupp, S. Feichtinger, Y.B. Kang, C. Bernhard, and J. Schenk: Steel Res. Int., 2015, vol. 86, p. 1–11.

    Article  Google Scholar 

  50. Y. Tabatabaei, K.S. Coley, G.A. Irons, and S. Sun: Metall. Mater. Trans. B, 2018, vol. 49, pp. 375–87.

    Article  Google Scholar 

  51. 52 M.M. Ali, S.J. Raina, and V.K. Singh: Cem. Concr. Res., 1989, vol. 19, pp. 47–52.

    Article  Google Scholar 

  52. B.J. Monaghan, S.A Nightingale, L. Chen, and G. A. Brooks: Mater. Sci., 2004, pp. 585–94.

  53. 54 H. Soll-Morris, C. Sawyer, Z.T. Zhang, G.N. Shannon, J. Nakano, and S. Sridhar: Fuel, 2009, vol. 88, pp. 670–82.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Foundation for Innovation John Evans Leaders Fund (CFI JELF, Project Number: 32826) for funding this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keyan Miao.

Additional information

Manuscript submitted August 10, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, K., Haas, A., Sharma, M. et al. In Situ Observation of Calcium Aluminate Inclusions Dissolution into Steelmaking Slag. Metall Mater Trans B 49, 1612–1623 (2018). https://doi.org/10.1007/s11663-018-1303-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1303-y

Keywords

Navigation