Skip to main content
Log in

In Situ Observations of Agglomeration of Non-metallic Inclusions at Steel/Ar and Steel/Slag Interfaces by High-Temperature Confocal Laser Scanning Microscope: A Review

  • Advanced Real Time Optical Imaging
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The agglomeration behavior of non-metallic inclusions in the steelmaking process is important for controlling the cleanliness of the steel. In this work, the observation of agglomeration behaviors of inclusions at steel/Ar and steel/slag interfaces using a high-temperature confocal laser scanning microscope (HT-CLSM) is summarized. This HT-CLSM technique has been applied to observe phase transformation during solidification and heat treatment and the engulfment and pushing behavior of inclusions in front of the solidified interface. In the current work, the inclusion agglomeration behavior at steel/Ar and steel/slag interfaces is summarized and discussed. Subsequently, the development of the theoretical work investigating inclusion agglomeration at steel/Ar and steel/slag interfaces including the initial capillary force model and Kralchevsky–Paunov model is described. Finally, the Kralchevsky–Paunov model is applied to investigating nitride inclusion agglomeration at high-manganese steel/Ar interfaces. This work aims to give a critical review of the application of HT-CLSM in secondary refining as well as a better control of inclusion elimination for clean steel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. L. Zhang and B.G. Thomas, ISIJ Int. 43, 271 (2003).

    Article  Google Scholar 

  2. T.A. Engh, Principles of Metals Refining (New York: Oxford University Press, 1992), pp. 1–3.

    Google Scholar 

  3. L. Zhang and B.G. Thomas, Metall. Mater. Trans. B 37B, 733 (2006).

    Article  Google Scholar 

  4. O. Wijk: Inclusion engineering, in Proc. 7th Int. Conf. Refining Process (SCANINJECT 733. VII), Luleå, Sweden (1995), p. 35.

  5. H. Chikama, H. Shibata, T. Emi, and M. Suzuki, Mater. Trans. JIM 37, 620 (1996).

    Google Scholar 

  6. H. Shibata, H.B. Yin, S. Yoshinaga, T. Emi, and M. Suzuki, ISIJ Int. 38, 149 (1998).

    Article  Google Scholar 

  7. W. Mu, H. Shibata, P. Hedström, P.G. Jönsson, and K. Nakajima, Steel Res. Int. 87, 10 (2016).

    Article  Google Scholar 

  8. W. Mu, P.G. Jönsson, and K. Nakajima, J. Mater. Sci. 51, 2168 (2016).

    Article  Google Scholar 

  9. H.B. Yin, H. Shibata, T. Emi, and M. Suzuki, ISIJ Int. 37, 936 (1997).

    Article  Google Scholar 

  10. H.B. Yin, H. Shibata, T. Emi, and M. Suzuki, ISIJ Int. 37, 946 (1997).

    Article  Google Scholar 

  11. K. Nakajima and S. Mizoguchi, Metall. Mater. Trans. B 32, 629 (2001).

    Article  Google Scholar 

  12. S. Kimura, K. Nakajima, and S. Mizoguchi, Metall. Mater. Trans. B 32, 79 (2001).

    Article  Google Scholar 

  13. W. Mu, N. Dogan, and K.S. Coley, Metall. Mater. Trans. B 48, 2379 (2017).

    Article  Google Scholar 

  14. W. Mu, N. Dogan, and K.S. Coley, Metall. Mater. Trans. B 48, 2092 (2017).

    Article  Google Scholar 

  15. W. Mu, N. Dogan, and K.S. Coley, J. Mater. Sci. (2018). https://doi.org/10.1007/s10853-018-2268-6.

  16. B. Coletti, B. Blanpain, S. Vantilt, and S. Sridhar, Metall. Mater. Trans. B 34, 533 (2003).

    Article  Google Scholar 

  17. S. Vantilt, B. Coletti, B. Blanpain, J. Fransaer, P. Wollants, and S. Sridhar, ISIJ Int. 44, 1 (2004).

    Article  Google Scholar 

  18. G. Liang, C. Wang, and Y. Fang, Acta Metall. Sin. Chin. Ed. 42, 708 (2006).

    Google Scholar 

  19. J. Appelberg, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson, Mater. Sci. Eng. A 495, 330 (2008).

    Article  Google Scholar 

  20. Y. Kang, B. Sahebkar, P.R. Scheller, K. Morita, and D. Sichen, Metall. Mater. Trans. B 42, 522 (2011).

    Article  Google Scholar 

  21. G. Du, J. Li, Z.B. Wang, and C.B. Shi, Steel Res. Int. 88, 1600185 (2016). https://doi.org/10.1002/srin.201600185.

    Article  Google Scholar 

  22. S.K. Michelic, U.D. Salgado, C. Bernhard, and I.O.P. Conf, Series. Mater. Sci. Eng. 143, 012010 (2016).

    Google Scholar 

  23. J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson, Ironmak Steelmak 35, 589 (2008).

    Article  Google Scholar 

  24. P. Misra, V. Chevrier, S. Sridhar, and A. Cramb, Metall. Mater. Trans. B 31, 1135 (2000).

    Article  Google Scholar 

  25. P. Misra, S. Sridhar, and A. Cramb, Metall. Mater. Trans. B 32, 963 (2001).

    Article  Google Scholar 

  26. J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson, Mater. Sci. Eng. A 495, 316 (2008).

    Article  Google Scholar 

  27. P.A. Kralchevsky, V.N. Paunov, N.D. Denkov, I.B.V. Ivanoc, and K. Nagayama, J. Colloid. Interface Sci. 155, 420 (1993).

    Article  Google Scholar 

  28. V.N. Paunov, P.A. Kralchevsky, N.D. Denkov, and K. Nagayama, J. Colloid. Interface Sci. 157, 100 (1993).

    Article  Google Scholar 

  29. S.C. Lee, C. Tse, K.W. Yi, P. Misra, V. Chevrier, C. Orrling, S. Sridhar, and A. Cramb, J. Non-Cryst. Solids 282, 41 (2001).

    Article  Google Scholar 

  30. K. Miao, A. Haas, M. Sharma, W. Mu, and N. Dogan, Metall. Mater. Trans. B (2017, Unpublished work).

  31. B.J. Monaghan and L. Chen, J. Non-Cryst. Solids 347, 254 (2004).

    Article  Google Scholar 

  32. B.J. Monaghan and L. Chen, Ironmak Steelmak 33, 323 (2006).

    Article  Google Scholar 

  33. B.J. Monaghan, L. Chen, and J. Sorbe, Ironmak Steelmak 32, 258 (2005).

    Article  Google Scholar 

  34. S. Feichtinger, S.K. Michelic, Y.B. Kang, and C. Bernhard, J. Am. Ceram. Soc. 97, 316 (2014).

    Article  Google Scholar 

  35. E. Jahnke, F. Emde, and F. Lösch, Tables of Higher Functions (New York: McGraw-Hill, 1960).

    MATH  Google Scholar 

  36. M. Abramovitz and I.A. Stegun, Handbook of Mathematical Functions (New York: Dover, 1965).

    Google Scholar 

  37. C.F. Chan Man Fong, D. De Kee, and P.N. Kaloni, Advanced Mathematics for Engineering and Science (Singapore: World Scientific Publishing Co. Pte. Ltd., 2003), p. 5.

    Book  MATH  Google Scholar 

  38. Y.N. Wang, J. Yang, X.L. Xin, R.Z. Wang, and L.Y. Xu, Metall. Mater. Trans. B 47, 1378 (2016). https://doi.org/10.1007/s11663-015-0568-7.

    Article  Google Scholar 

  39. J. Yang, Y.N. Wang, X.M. Ruan, R.Z. Wang, K. Zhu, Z.J. Fan, Y.C. Wang, C.B. Li, and X.F. Jiang, Metall. Mater. Trans. B 46, 1365 (2015).

    Article  Google Scholar 

  40. J.H. Park, D.-J. Kim, and D.J. Min, Metall. Mater. Trans. A 43, 2316 (2012).

    Article  Google Scholar 

  41. N. Kikuchi, S. Nabeshima, Y. Kishimoto, T. Matsushita, and S. Sridhar, ISIJ Int. 47, 1255 (2007).

    Article  Google Scholar 

  42. J.F. Lynch, C.G. Ruderer, and W.H. Duckworth, Engineering Properties of Selected Ceramic Materials (Columbus, OH: American Ceramic Society, Inc., 1966).

    Google Scholar 

  43. B.J. Keene, Contact angle and work of adhesion between ferrous melts and non-metallic solid, Slag Atlas (2nd edn), ed. by Verein Deutsscher Eisenhüttenleute (VDEh) (Verlag Stahleisen GmbH, 1995), pp. 513–539.

  44. B.J. Keene and K.C. Mills, Densities of molten slag, Slag Atlas (2nd edn), ed. by Verein Deutsscher Eisenhüttenleute (VDEh) (Verlag Stahleisen GmbH, 1995), pp. 313–347.

  45. G.S. Ershov and A.M. Kovalenko, Russ. Metall. 1, 47 (1968).

    Google Scholar 

  46. C.V. Ciobanu, D.T. Tambe, and V.B. Shenoy, Surf. Sci. 582, 145 (2005).

    Article  Google Scholar 

  47. S.K. Rhee, J. Am. Ceram. Soc. 53, 639 (1970).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Foundation for Innovation John Evans Leaders Fund (CFI JELF, Project No. 32826), and the McMaster Steel Research Centre (SRC) members for funding the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wangzhong Mu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, W., Dogan, N. & Coley, K.S. In Situ Observations of Agglomeration of Non-metallic Inclusions at Steel/Ar and Steel/Slag Interfaces by High-Temperature Confocal Laser Scanning Microscope: A Review. JOM 70, 1199–1209 (2018). https://doi.org/10.1007/s11837-018-2893-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2893-1

Navigation