Skip to main content
Log in

Agglomeration of Non-metallic Inclusions at the Steel/Ar Interface: Model Application

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Inclusion agglomeration is an important element in several industrial problems during steelmaking, such as nozzle clogging. In parallel work by the authors, a revised Kralchevsky-Paunov model has been established and the performance of this model has been validated against the experimental data from in-situ observations using confocal laser scanning microscopy. In this work, the revised model has been applied to quantitatively evaluate the attractive capillary force for the agglomeration of various inclusions at the interface between Ar and liquid iron/steel. A parametric study of the effects on the capillary force of the inclusion density, contact angle between the inclusion and liquid steel, and the surface tension of the liquid metal are quantitatively investigated. The results show that inclusion density and contact angle have a more marked effect on the capillary force than surface tension of liquid metal. Moreover, the inclusion agglomeration behavior in the liquid iron/steel matrix is discussed. The coagulation coefficient of various inclusions is calculated. Both the calculation results of the attractive capillary force of inclusions at the interface between Ar and liquid iron/steel and coagulation coefficient of inclusions in the liquid iron/steel matrix can offer a close agreement; moreover, the order of magnitude of inclusion agglomeration tendency is suggested. By using the coagulation coefficient, the inclusion collision volume and collision rate are calculated and the effects of inclusion composition, size, and number density are investigated. The evaluation results show that the tendency for affecting inclusion collision is inclusion number density > inclusion size > inclusion composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Reference

  1. T.A. Engh: Principles of Metals Refining, Oxford University Press, New York, 1992, pp. 1–3; 246–251.

  2. 2. L. Zhang, and B.G. Thomas: ISIJ Int., 2003, vol. 43, pp. 271-291.

    Article  Google Scholar 

  3. L. Zhang, and B.G. Thomas: 7th European Electric Steelmaking Conference, Associazione Italiana di Metallurgia, Milano, Italy, 2002. vol. 2. pp. 77–86.

  4. 4. L. Zhang and B. G. Thomas: Metall. Mater. Trans. B, 2006, vol.37, pp. 733-61.

    Article  Google Scholar 

  5. 5. J. Szekely and K. Nakanishi: Metall. Trans. B, 1975, vol.6, pp.245-56.

    Article  Google Scholar 

  6. 6. L. Zhang and S. Taniguchi: Inter. Mater. Rev., 2000, vol.45, pp. 59-82.

    Article  Google Scholar 

  7. 7. Y. Miki, H. Kitaoka, T. Sakuraya, and T. Fuji: Testu-to-Hagané, 1992, vol.78, pp.431-8.

    Article  Google Scholar 

  8. 8. H.B. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol.37, pp. 936-45.

    Article  Google Scholar 

  9. 9. H.B. Yin, H. Shibata, T. Emi, and M. Suzuki: ISIJ Int., 1997, vol.37, pp. 946-55.

    Article  Google Scholar 

  10. 10. S. Kimura, K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol. 32, pp. 79-85.

    Article  Google Scholar 

  11. 11. K. Nakajima, and S. Mizoguchi: Metall. Mater. Trans. B, 2001, vol.32, pp. 629-41.

    Article  Google Scholar 

  12. 12. J. Appelberg, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson: Mater. Sci. Eng. A, 2008, vol. 495, pp. 330-4.

    Article  Google Scholar 

  13. 13. J. Wikström, K. Nakajima, H. Shibata, A. Tilliander, and P. Jönsson: Ironmaking & Steelmaking, 2008, vol.35, 589-99.

    Article  Google Scholar 

  14. G. Du, J. Li, Z.B. Wang, and C.B. Shi: Steel Res. Int., 2016, DOI:10.1002/srin.201600185.

    Google Scholar 

  15. 15. D. Wang, M. Jiang, H. Matsuura, and F. Tsukihashi: Steel Res. Int., 2014, vol. 85, pp. 16-25.

    Article  Google Scholar 

  16. 16. S.K. Michelic, U.D. Salgado and C. Bernhard: IOP Conf. Series: Materials Science and Engineering, 2016, vol.143, 012010, pp. 1-10.

    Google Scholar 

  17. 17. P.A. Kralchevsky, V.N. Paunov, N.D. Denkov, I.B.V. Ivanoc, and K. Nagayama: J. Colloid. Inter. Sci., 1993, vol.155, pp. 420-37.

    Article  Google Scholar 

  18. 18. V.N. Paunov, P.A. Kralchevsky, N.D. Denkov, and K. Nagayama: J. Colloid. Inter. Sci., 1993, vol. 157, pp. 100-12.

    Article  Google Scholar 

  19. W. Mu, N. Dogan, and K.S. Coley: 5th International Conference on Process Development in Iron and Steelmaking (SCANMET V), Luleå, June 12–15, 2016, CD-Room.

  20. W. Mu, N. Dogan, and K.S. Coley: Metall. Mater. Trans. B, submitted, 2017

  21. C.F. Chan Man Fong, D.D. Kee, and P.N. Kaloni: Advanced Mathematics for Engineering and Science, World Scientific Publishing Co. Pte. Ltd., 2003

  22. 22. C. Xuan, A.V. Karasev and P.G. Jönsson: ISIJ Int., 2016, vol. 56, pp.1204-1209.

    Article  Google Scholar 

  23. 23. K. Nakanishi, J. Szekely: Trans. ISIJ, 1975, vol.15, pp.522-30.

    Google Scholar 

  24. 24. L. Zhang, S. Taniguchi, and K. Cai: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 253-66.

    Article  Google Scholar 

  25. 25. Y. Miki, B.G. Thomas, A. Denissov and Y. Shimada: Iron & Steelmaker, 1997, vol.24, pp. 31-8.

    Google Scholar 

  26. 26. J. Zhang and H. Lee: ISIJ Int., 2004, vol.44, pp. 1629-38.

    Article  Google Scholar 

  27. 27. M. Söder, P.G. Jönsson and L. Jonsson: Steel Res. Int., 2004, vol.75, pp. 128-38.

    Article  Google Scholar 

  28. 28. J.H. Rushton, E.W. Costich, H.J. Everett: Chem. Eng. Prog., 1950, vol. 46, pp. 467-79.

    Google Scholar 

  29. 29. H. Higashitani, K. Yamauchi, Y. Matsuno, and G. Hosokawa: J. Chem. Eng. Jpn., 1983, vol.16, pp. 299-304.

    Article  Google Scholar 

  30. 30. S. Taniguchi, A. Kikuchi, T. Ise and N. Shoji: ISIJ Int., 1996, vol.36, pp. S117-20.

    Article  Google Scholar 

  31. 31. H. Ling, L. Zhang, and H. Li: Metall. Mater. Trans. B, 2016, vol.47, pp. 2991-3012.

    Article  Google Scholar 

  32. 32. P.G. Saffman, and J.S. Turner: J. Fluid Mech., 1956, vol.1, pp.16-30.

    Article  Google Scholar 

  33. 33. T. Nakaoka, S. Taniguchi, K. Matsumoto, and S.T. Johansen: ISIJ Int., 2001, vol.41, pp. 1103-11.

    Article  Google Scholar 

  34. 34. H.C. Hamaker: Physica, 1937, vol.4, pp.1058-72.

    Article  Google Scholar 

  35. 35. S-W. Lee and W.M. Sigmund: Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, vol. 204, pp. 43-50.

    Article  Google Scholar 

  36. 36. E.M. Lifshitz:Soviet Physics JETP, 1956, vol.2, pp.73-83.

    Google Scholar 

  37. 37. J. Visser: Adv. Colloid & Inter. Sci., 1972, vol.3, pp.331-63.

    Article  Google Scholar 

  38. K. Nakajima, W. Mu, and P. Jönsson, Proceeding of 8th International Conference on High Temperature Capillarity (HTC), Bad-Herrenalb, Germany, May 17th–21st, 2015, CD-Room.

  39. J. Frenkel: Kinetic Theory of Liquids, Dover Publications, Inc., New York, 1955, Chapter VI.

  40. J.N. Israelachvili: Intermolecular and Surface Forces: Revised, 3rd ed., Academic Press, Burlington, 2011, pp. 200–03.

  41. 41. C. Xuan, H. Shibata, S. Sukenaga, P.G. Jönsson, and K. Nakajima: ISIJ Int., 2015, vol.55, pp. 1882-90.

    Article  Google Scholar 

  42. 42. J.F. Lynch, C.G. Ruderer, and W.H. Duckworth: Engineering properties of selected ceramic materials, American ceramic society, Inc., Columbus, Ohio, 1966.

    Google Scholar 

  43. 43. K. Ogino, K. Nogi, and Y. Koshida: Tetsu-to-Hagané, 1973, vol.59, pp.1380-87.

    Article  Google Scholar 

  44. 44. K. Ogino, A. Adachi, and N. Nogi: Tetsu-to-Hagané, 1973, vol.59, pp. 1237-44.

    Google Scholar 

  45. 45. K. Nakajima: Tetsu-to-Hagané, 1994, vol.80, pp. 383-8.

    Article  Google Scholar 

  46. 46. S. Hara, N. Ikemiya, and K. Ogino: Tetsu-to-Hagané, 1990, vol.76, pp. 2144-51.

    Article  Google Scholar 

  47. 47. H. Shibata, Y. Watanabe, K. Nakajima, and S.-Y. Kitamura: ISIJ Int., 2009, vol.49: pp. 985-91.

    Article  Google Scholar 

  48. 48. Y. Kang, B. Sahebkar, P.R. Scheller, K. Morita, and D. Sichen: Metall. Mater. Trans. B, 2011, vol. 42, pp. 522-34.

    Article  Google Scholar 

  49. B.J. Keene: Contact angle and work of adhesion between ferrous melts and non-metallic solid, Slag Atlas, 2nd ed, edited by Verein Deutsscher Eisenhüttenleute (VDEh), Verlag Stahleisen GmbH, 1995, pp. 513–39.

  50. B.J. Keene and K.C. Mills: Densities of molten slag, Slag Atlas. 2nd ed., edited by Verein Deutsscher Eisenhüttenleute (VDEh), Verlag Stahleisen GmbH, 1995, pp. 313–47.

  51. V.A. Efimov, N.Ya. Ishchuk, V.V. Cheburko, A.V. Klibus, and B.M. Lepinskikh: Russian Metallurgy, 1971, pp. 10.

  52. E.I. Malinovskii and V.A. Voronov: Russian Metall., 1969, pp. 24.

  53. 53. K. Sasai, and Y. Mizukami: ISIJ Int., 2001, vol. 41, pp. 1331-9.

    Article  Google Scholar 

  54. 54. T. Mizoguchi, Y. Ueshima, M. Sugiyama, and K. Mizukami: ISIJ Int., 2013, vol. 53, pp. 639-47.

    Article  Google Scholar 

  55. 55. C. Xuan, A.V. Karasev, P.G. Jönsson, and K. Nakajima: Steel Res. Int., 2017, vol. 88, 1600090.

    Article  Google Scholar 

  56. 56. H. Lei, K. Nakajima, and J.C. He: ISIJ Int., 2010, vol.50, pp. 1735-45.

    Article  Google Scholar 

  57. 57. C. Xuan, W. Mu, Z.I. Olano, P.G. Jönsson, and K. Nakajima: Steel Res. Int., 2016, vol.87, pp. 911-20.

    Article  Google Scholar 

  58. 58. S. Taniguchi and A. Kikuchi, Testu-to-Hagané, 1992, vol.78, pp. 527-35.

    Article  Google Scholar 

  59. 59. D.-Y. Sheng, M. Söder, P.G. Jönsson and L. Jonsson: Scand. J. Metall., 2002, vol.31, pp.134-47.

    Article  Google Scholar 

  60. 60. S. Basu, S.K. Choudhary, and N.U. Girase: ISIJ Int., 2004, vol.44, pp.1653-60.

    Article  Google Scholar 

  61. M. Bilal, P. Chanda, S. Suresh, V. Sharma, V. Jain, and S.N. Ali: 5th International Conference on Process Development in Iron and Steelmaking (SCANMET V), Luleå, June 12–15, 2016, CD-Room.

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation John Evans Leaders Fund (CFI JELF, project number: 32826) and the McMaster Steel Research Centre (SRC) members for funding the research. Professor Keiji Nakajima (KTH Royal Institute of Technology, Sweden) is acknowledged by W.M. for the discussion of inclusion agglomeration.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wangzhong Mu or Neslihan Dogan.

Additional information

Manuscript submitted January 27, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, W., Dogan, N. & Coley, K.S. Agglomeration of Non-metallic Inclusions at the Steel/Ar Interface: Model Application. Metall Mater Trans B 48, 2092–2103 (2017). https://doi.org/10.1007/s11663-017-0998-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-0998-5

Keywords

Navigation