Skip to main content
Log in

Effects of Mg and La on the evolution of inclusions and microstructure in Ca-Ti treated steel

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The evolution of inclusions and the formation of acicular ferrite (AF) in Ca-Ti treated steel was systematically investigated after Mg and La addition. The inclusions in the molten steel were Ca-Al-O, Ca-Al-Mg-O, and La-Mg-Ca-Al-O after Ca, Mg, and La addition, respectively. The type of oxide inclusion in the final quenched samples was the same as that in the molten steel. However, unlike those in molten steel, the inclusions were Ca-Al-Ti-O + MnS, Ca-Mg-Al-Ti-O + MnS, and La-Ca-Mg-Al-Ti-O + MnS in Mg-free, Mg-containing, and La-containing samples, respectively. The inclusions distributed dispersedly in the La-containing sample. In addition, the average size of the inclusions in the La-containing sample was the smallest, while the number density of inclusions was the highest. The size of effective inclusions (nucleus of AF formation) was mainly in the range of 1–3 µm. In addition, the content of ferrite side plates (FSP) decreased, while the percentage of AF increased by 16.2% due to the increase in the number of effective inclusions in the La-containing sample in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.L. Wan, R. Wei, and K.M. Wu, Effect of acicular ferrite formation on grain refinement in the coarse-grained region of heat-affected zone, Mater. Charact., 61(2010), No. 7, p. 726.

    Article  CAS  Google Scholar 

  2. S.F. Medina, M. Gómez, and L. Rancel, Grain refinement by intragranular nucleation of ferrite in a high nitrogen content vanadium microalloyed steel, Scr. Mater., 58(2008), No. 12, p. 1110.

    Article  CAS  Google Scholar 

  3. H. Bhadeshia and R. Honeycombe, Steels Microstructure and Properties, 4th ed., Butterworth-Heinemann, Elsevier Ltd., 2017: 401–419.

  4. X. Wang, C. Wang, J. Kang, G. Yuan, R.D.K. Misra, and G.D. Wang, Improved toughness of double-pass welding heat affected zone by fine Ti-Ca oxide inclusions for high-strength low-alloy steel, Mater. Sci. Eng. A, 780(2020), art. No. 139198.

  5. D. Loder, S.K. Michelic, A. Mayerhofer, and C. Bernhard, On the capability of nonmetallic inclusions to act as nuclei for acicular ferrite in different steel grades, Metall. Mater. Trans. B, 48(2017), No. 4, p. 1992.

    Article  CAS  Google Scholar 

  6. J.S. Byun, J.H. Shim, Y.W. Cho, and D.N. Lee, Non-metallic inclusion and intragranular nucleation of ferrite in Ti-killed C-Mn steel, Acta Mater., 51(2003), No. 6, p. 1593.

    Article  CAS  Google Scholar 

  7. H.H. Jin, J.H. Shim, Y.W. Cho, and H.C. Lee, Formation of intragranular acicular ferrite grains in a Ti-containing low carbon steel, ISIJ Int., 43(2003), No. 7, p. 1111.

    Article  CAS  Google Scholar 

  8. B. Wen, B. Song, N. Pan, Q.Y. Hu, and J.H. Mao, Effect of SiMg alloy on inclusions and microstructures of 16Mn steel, Ironmaking Steelmaking, 38(2011), No. 8, p. 577.

    Article  CAS  Google Scholar 

  9. W.Z. Mu, P.G. Jönsson, and K. Nakajima, Recent aspects on the effect of inclusion characteristics on the intragranular ferrite formation in low alloy steels: A review, High Temp. Mater. Processes, 36(2017), No. 4, p. 309.

    Article  CAS  Google Scholar 

  10. D.S. Sarma, A.V. Karasev, and P.G. Jönsson, On the role of non-metallic inclusions in the nucleation of acicular ferrite in steels, ISIJ Int., 49(2009), No. 7, p. 1063.

    Article  CAS  Google Scholar 

  11. T. Furuhara, J. Yamaguchi, N. Sugita, G. Miyamoto, and T. Maki, Nucleation of proeutectoid ferrite on complex precipitates in austenite, ISIJ Int., 43(2003), No. 10, p. 1630.

    Article  CAS  Google Scholar 

  12. J.H. Shim, Y.J. Oh, J.Y. Suh, Y.W. Cho, J.D. Shim, J.S. Byun, and D.N. Lee, Ferrite nucleation potency of non-metallic inclusions in medium carbon steels, Acta Mater., 49(2001), No. 12, p. 2115.

    Article  CAS  Google Scholar 

  13. X.B. Li, Y. Min, Z. Yu, C.J. Liu, and M.F. Jiang, Effect of Mg addition on nucleation of intra-granular acicular ferrite in Al-killed low carbon steel, J. Iron Steel Res. Int., 23(2016), No. 5, p. 415.

    Article  Google Scholar 

  14. T. Koseki and G. Thewlis, Overview Inclusion assisted micro-structure control in C-Mn and low alloy steel welds, Mater. Sci. Technol., 21(2005), No. 8, p. 867.

    Article  CAS  Google Scholar 

  15. L.Y. Xu, J. Yang, R.Z. Wang, W.L. Wang, and Y.N. Wang, Effect of Mg addition on formation of intragranular acicular ferrite in heat-affected zone of steel plate after high-heat-input welding, J. Iron Steel Res. Int., 25(2018), No. 4, p. 433.

    Article  Google Scholar 

  16. M. Jiang, X.H. Wang, B. Chen, and W.J. Wang, Laboratory study on evolution mechanisms of non-metallic inclusions in high strength alloyed steel refined by high basicity slag, ISIJ Int., 50(2010), No. 1, p. 95.

    Article  CAS  Google Scholar 

  17. J.H. Park, S.B. Lee, and D.S. Kim, Inclusion control of ferritic stainless steel by aluminum deoxidation and calcium treatment, Metall. Mater. Trans. B, 36(2005), No. 1, p. 67.

    Article  Google Scholar 

  18. J.H. Park, S.B. Lee, and H.R. Gaye, Thermodynamics of the formation of MgO-Al2O3-TiOx inclusions in Ti-stabilized 11Cr ferritic stainless steel, Metall. Mater. Trans. B, 39(2008), No. 6, p. 853.

    Article  Google Scholar 

  19. M. Opiela and A. Grajcar, Modification of non-metallic inclusions by rare-earth elements in microalloyed steels, Arch. Foundry Eng., 12(2012), No. 2, p. 129.

    Article  CAS  Google Scholar 

  20. X.X. Deng, M. Jiang, and X.H. Wang, Mechanisms of inclusion evolution and intra-granular acicular ferrite formation in steels containing rare earth elements, Acta Metall. Sinica Engl. Lett., 25(2012), No. 3, p. 241.

    CAS  Google Scholar 

  21. M.M. Song, B. Song, S.H. Zhang, Z.L. Xue, Z.B. Yang, and R.S. Xu, Role of lanthanum addition on acicular ferrite transformation in C-Mn steel, ISIJ Int., 57(2017), No. 7, p. 1261.

    Article  CAS  Google Scholar 

  22. X.D. Zhao, J. Jiang, G.B. Li, and F.Z. Li, Kinetics of formation of large-dimension rare earth inclusion in steels, J. Rare Earths, 22(2004), No. 3, p. 403.

    Google Scholar 

  23. X.K. Cui, B. Song, Z.B. Yang, Z. Liu, L.F. Li, and L. Wang, Effect of Mg on the evolution of inclusions and formation of acicular ferrite in La-Ti-treated steels, Steel Res. Int., 91(2020), No. 4, art. No. 1900563.

  24. H.S. Kim, C.H. Chang, and H.G. Lee, Evolution of inclusions and resultant microstructural change with Mg addition in Mn/Si/Ti deoxidized steels, Scripta Mater., 53(2005), No. 11, p. 1253.

    Article  CAS  Google Scholar 

  25. H.N. Lou, C. Wang, B.X. Wang, Z.D. Wang, Y.Q. Li, and Z.G. Chen, Inclusion evolution behavior of Ti-Mg oxide metallurgy steel and its effect on a high heat input welding HAZ, Metals, 8(2018), No. 7, art. No. 534.

  26. L.F. Zhang and B.G. Thomas, State of the art in evaluation and control of steel cleanliness, ISIJ Int., 43(2003), No. 3, p. 271.

    Article  CAS  Google Scholar 

  27. X.H. Wang, X.G. Li, Q. Li, F.X. Huang, H.B. Li, and J. Yang, Control of stringer shaped non-metallic inclusions of CaO-Al2O3 system in API X80 linepipe steel plates, Steel Res. Int., 85(2014), No. 2, p. 155.

    Article  CAS  Google Scholar 

  28. J.Y. Li, G.G. Cheng, Q. Ruan, J.X. Pan, and X.R. Chen, Formation and evolution of oxide inclusions in titanium-stabilized 18Cr stainless steel, ISIJ Int., 58(2018), No. 12, p. 2280.

    Article  CAS  Google Scholar 

  29. C. Pan, X.J. Hu, J.C. Zheng, P. Lin, and K.C. Chou, Effect of calcium content on inclusions during the ladle furnace refining process of AISI 321 stainless steel, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1499.

    Article  CAS  Google Scholar 

  30. S.F. Yang, J.S. Li, Z.F. Wang, J. Li, and L. Lin, Modification of MgOAl2O3 spinel inclusions in Al-killed steel by Ca-treatment, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 18.

    Article  CAS  Google Scholar 

  31. H.N. Lou, C. Wang, B.X. Wang, Z.D. Wang, and R.D.K. Misra, Effect of Ti-Mg-Ca treatment on properties of heat-affected zone after high heat input welding, J. Iron Steel Res. Int., 26(2019), No. 5, p. 501.

    Article  CAS  Google Scholar 

  32. Z.H. Wu, W. Zheng, G.Q. Li, H. Matsuura, and F. Tsukihashi, Effect of inclusions’ behavior on the microstructure in Al-Ti deoxidized and magnesium-treated steel with different aluminum contents, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1226.

    Article  CAS  Google Scholar 

  33. Y.T. Zhou, S.F. Yang, J.S. Li, W. Liu, and A.P. Dong, Effects of heat-treatment temperature on the microstructure and mechanical properties of steel by MgO nanoparticle additions, Materials, 11(2018), No. 9, art. No. 1707.

  34. C. Wang, X. Wang, J. Kang, G. Yuan, and G.D. Wang, Effect of thermomechanical treatment on acicular ferrite formation in Ti-Ca deoxidized low carbon steel, Metals, 9(2019), No. 3, art. No. 296.

  35. Z. Liu, B. Song, Z.B. Yang, X.K. Cui, L.F. Li, L. Wang, and Z.R. Song, Effect of cerium content on the evolution of inclusions and formation of acicular ferrite in Ti-Mg-killed EH36 steel, Metals, 10(2020), No. 7, art. No. 863.

  36. X.F. Bai, Y.H. Sun, R.M. Chen, Y.M. Zhang, and Y.F. Cai, Formation and thermodynamics of CaS-bearing inclusions during Ca treatment in oil casting steels, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 573.

    Article  CAS  Google Scholar 

  37. Y. Li, C.Y. Chen, G.Q. Qin, Z.H. Jiang, M. Sun, and K. Chen, Influence of crucible material on inclusions in 95Cr saw-wire steel deoxidized by Si-Mn, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1083.

    Article  CAS  Google Scholar 

  38. L.Y. Lan and G.Q. Shao, Morphological evolution of HAZ microstructures in low carbon steel during simulated welding thermal cycle, Micron, 131(2020), art. No. 102828.

  39. G. Thewlis, The nature of acicular ferrite in ferrous weld metals and the challenges for microstructure modelling, Mater. Sci. Forum, 426–432(2003), p. 4019.

    Article  Google Scholar 

  40. G. Thewlis, Classification and quantification of microstructures in steels, Mater. Sci. Technol., 20(2004), No. 2, p. 143.

    Article  CAS  Google Scholar 

  41. G.Z. Ye, P. Jönsson, and T. Lund, Thermodynamics and kinetics of the modification of Al2O3 inclusions, ISIJ Int., 36(1996), No. Suppl, p. S105.

    Article  Google Scholar 

  42. R. Takata, J. Yang, and M. Kuwabara, Characteristics of inclusions generated during Al-Mg complex deoxidation of molten steel, ISIJ Int., 47(2007), No. 10, p. 1379.

    Article  CAS  Google Scholar 

  43. Y.Y. Xiao, G.C. Wang, H. Lei, and S. Sridhar, Formation pathways for MgOAl2O3 inclusions in iron melt, J. Alloys Compd., 813(2020), art. No. 152243.

  44. T.S. Zhang, Y. Min, C.J. Liu, and M.F. Jiang, Effect of Mg addition on the evolution of inclusions in Al-Ca deoxidized melts, ISIJ Int., 55(2015), No. 8, p. 1541.

    Article  CAS  Google Scholar 

  45. H.H. Liu, P.X. Fu, H.W. Liu, Y.F. Gao, C. Sun, N.Y. Du, and D.Z. Li, Effects of rare earth elements on microstructure evolution and mechanical properties of 718H pre-hardened mold steel, J. Mater. Sci. Technol., 50(2020), p. 245.

    Article  Google Scholar 

  46. Z.Y. Deng, L. Chen, G.D. Song, and M.Y. Zhu, Formation and evolution of non-metallic inclusions in Ti-bearing Al-killed steel during secondary refining process, Metall. Mater. Trans. B, 51(2020), No. 1, p. 173.

    Article  CAS  Google Scholar 

  47. T.S. Zhang, C.J. Liu, and M.F. Jiang, Effect of Mg on behavior and particle size of inclusions in Al-Ti deoxidized molten steels, Metall. Mater. Trans. B, 47(2016), No. 4, p. 2253.

    Article  CAS  Google Scholar 

  48. Y. Ren, L.F. Zhang, W. Yang, and H.J. Duan, Formation and thermodynamics of Mg-Al-Ti-O complex inclusions in Mg-Al-Ti-deoxidized steel, Metall. Mater. Trans. B, 45(2014), No. 6, p. 2057.

    Article  CAS  Google Scholar 

  49. W.Z. Mu, N. Dogan, and K.S. Coley, Agglomeration of non-metallic inclusions at the steel/Ar interface: Model application, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2092.

    Article  CAS  Google Scholar 

  50. Z. Yu and C.J. Liu, Evolution mechanism of inclusions in medium-manganese steel by Mg treatment with different aluminum contents, Metall. Mater. Trans. B, 50(2019), No. 2, p. 772.

    Article  CAS  Google Scholar 

  51. S. Kimura, K. Nakajima, and S. Mizoguchi, Behavior of alumina-magnesia complex inclusions and magnesia inclusions on the surface of molten low-carbon steels, Metall. Mater. Trans. B, 32(2001), No. 1, p. 79.

    Article  Google Scholar 

  52. S. Kimura, Y. Nabeshima, K. Nakajima, and S. Mizoguchi, Behavior of nonmetallic inclusions in front of the solid-liquid interface in low-carbon steels, Metall. Mater. Trans. B, 31(2000), No. 5, p. 1013.

    Article  Google Scholar 

  53. P. Li, G.Q. Li, and W. Zheng, Effects of Al-Ti deoxidation on MnS precipitation and the microstructure of non-quenched and tempered steel, J. Iron Steel Res., 25(2013), No. 11, p. 49.

    Google Scholar 

  54. H. Mabuchi, R. Uemori, and M. Fujioka, The role of Mn depletion in intra-granular ferrite transformation in the heat affected zone of welded joints with large heat input in structural steels, ISIJ Int., 36(1996), No. 11, p. 1406.

    Article  CAS  Google Scholar 

  55. L. Cheng, C. Xu, L.L. Lu, L. Yu, and K.M. Wu, Experimental and first principle calculation study on titanium, zirconium and aluminum oxides in promoting ferrite nucleation, J. Alloys Compd., 742(2018), p. 112.

    Article  CAS  Google Scholar 

  56. X.B. Li, Y. Min, C.J. Liu, and M.F. Jiang, Effect of Mg addition on the characterization of γ-α phase transformation during continuous cooling in low carbon steel, Steel Res. Int., 86(2015), No. 12, p. 1530.

    Article  CAS  Google Scholar 

  57. L. Cheng and K.M. Wu, New insights into intragranular ferrite in a low-carbon low-alloy steel, Acta Mater., 57(2009), No. 13, p. 3754.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Nos. 51774024 and 52074025)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Song, B., Yang, Zb. et al. Effects of Mg and La on the evolution of inclusions and microstructure in Ca-Ti treated steel. Int J Miner Metall Mater 28, 1940–1948 (2021). https://doi.org/10.1007/s12613-021-2285-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2285-3

Keywords

Navigation