Skip to main content
Log in

In Situ Observation of Dissolution of Oxide Inclusions in Steelmaking Slags

  • Advanced Real Time Optical Imaging
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Better understanding of removal of non-metallic inclusions is of importance in the steelmaking process to control the cleanliness of steel. In this study, the dissolution rate of Al2O3 and Al2TiO5 inclusions in a liquid CaO-SiO2-Al2O3 slag was measured using high-temperature confocal scanning laser microscopy (HT-CSLM) at 1550°C. The dissolution rate of inclusions is expressed as a function of the rate of decrease of the radius of solid particles with time. It is found that Al2O3 inclusions have a slower dissolution rate than that of Al2TiO5 inclusions at 1550°C. The rate-limiting steps are investigated in terms of a shrinking core model. It is shown that the rate-limiting step for dissolution of both inclusion types is mass transfer in the slag at 1550°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H. Wang, L. Sun, B. Peng, and M. Jiang, J. Iron. Steel Res. Int. 20, 70 (2013).

    Article  Google Scholar 

  2. S. Basu, S.K. Choudhary, and N.U. Girase, ISIJ Int. 44, 1653 (2004).

    Article  Google Scholar 

  3. P. Kaushik, R. Lule, G. Castillo, J.-C. Delgado, F. Lopez, C. Perim, G. Pigatti, B. Henriques, F. Barbosa, and A. Nascimento, AIST Trans. 13, 168 (2016).

    Google Scholar 

  4. P. Kaushik, J. Lehmann, and M. Nadif, Metall. Mater. Trans. B 43, 710 (2012).

    Article  Google Scholar 

  5. A. Karasangabo and C. Bernhard, J. Adhes. Sci. Technol. 26, 1141 (2012).

    Google Scholar 

  6. D. Wang, J. Liu, M. Jiang, F. Tsukihashi, and H. Matsuura, Int. J. Miner. Metall. Mater. 18, 646 (2011).

    Article  Google Scholar 

  7. Z. Ren, X. Hu, X. Hou, X. Xue, and K. Chou, Int. J. Miner. Metall. Mater. 21, 345 (2014).

    Article  Google Scholar 

  8. S. Feichtinger, S.K. Michelic, Y.-B. Kang, and C. Bernhard, J. Am. Ceram. Soc. 97, 316 (2014).

    Article  Google Scholar 

  9. A.B. Fox, M.E. Valdez, J. Gisby, R.C. Atwood, P.D. Lee, and S. Sridhar, ISIJ Int. 44, 836 (2004).

    Article  Google Scholar 

  10. S. Sridhar and A.W. Cramb, Metall. Mater. Trans. B 31, 406 (2000).

    Article  Google Scholar 

  11. J.H. Park, J.G. Park, D.J. Min, Y.E. Lee, and Y.B. Kang, J. Eur. Ceram. Soc. 30, 3181 (2010).

    Article  Google Scholar 

  12. X. Guo, M. Guo, Z. Sun, J. Van Dyck, B. Blanpain, and P. Wollants, in Mater. Sci. Technol. Conf. (2010), pp. 1739–1750.

  13. S.A. Nightingale, G.A. Brooks, and B.J. Monaghan, Metall. Mater. Trans. B 36, 453 (2005).

    Article  Google Scholar 

  14. S.H. Lee, C. Tse, K.W. Yi, P. Misra, V. Chevrier, C. Orrling, S. Sridhar, and A.W. Cramb, J. Non Cryst. Solids 282, 41 (2001).

    Article  Google Scholar 

  15. J. Liu, F. Verhaeghe, M. Guo, B. Blanpain, and P. Wollants, J. Am. Ceram. Soc. 90, 3818 (2007).

    Google Scholar 

  16. J.-H. Park, I.-H. Jung, and H.-G. Lee, ISIJ Int. 46, 1 (2006).

    Article  Google Scholar 

  17. S. Michelic, J. Goriupp, S. Feichtinger, Y.-B. Kang, C. Bernhard, and J. Schenk, Steel Res. Int. 86, 1 (2015).

    Article  Google Scholar 

  18. H.A. Dabkowska and A.B. Dabkowski, Springer Handbook of Crystal Growt (Berlin: Springer, 2010), pp. 367–391.

    Book  Google Scholar 

  19. B.J. Keene, K.C. Mills, and M. Susa, Slag Atlas (Düsseldorf: Verlag Stahleisen mbH, 1995).

    Google Scholar 

  20. I.B. De Arenas, Sintering of Ceramics—New Emerging Techniques, ed. D.A. Lakshmanan, 1st ed. (Rejika, Croatia: InTech, 2012), p. 503.

    Google Scholar 

  21. K. Hatta, M. Higuchi, J. Takahashi, and K. Kodaira, J. Cryst. Growth 163, 279 (1996).

    Article  Google Scholar 

  22. H.J. Seifert and F. Aldinger, Zeitschrift Für Met. 87, 841 (1996).

    Google Scholar 

  23. A. Lee, VirtualDub, version 1.10.4, available at https://www.virtualdub.org. Accessed May 2018.

  24. O. Levenspiel, Chemical Reaction Engineering, 3rd ed. (New York: Wiley, 1999).

    Google Scholar 

  25. B.J. Monaghan and L. Chen, Ironmak. Steelmak. 33, 323 (2006).

    Article  Google Scholar 

  26. C. Orrling, S. Sridhar, and A.W. Cramb, ISIJ Int. 40, 877 (2000).

    Article  Google Scholar 

  27. M. Valdez, K. Prapakorn, A.W. Cramb, and S. Sridhar, Ironnmaking Steelmak. 29, 47 (2002).

    Article  Google Scholar 

  28. B.J. Monaghan and L. Chen, Steel Res. Int. 76, 346 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Natural Sciences and Engineering Research Council (Project No. 20000514) and Canada Foundation for Innovation John Evans Leaders Fund (CFI JELF, Project No. 32826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, M., Mu, W. & Dogan, N. In Situ Observation of Dissolution of Oxide Inclusions in Steelmaking Slags. JOM 70, 1220–1224 (2018). https://doi.org/10.1007/s11837-018-2908-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-018-2908-y

Navigation