Skip to main content
Log in

Selectable marker genes from plants: reliability and potential

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Selectable marker genes (SMGs) are still useful to efficiently obtain transgenic plants, although marker-free techniques are available, but with limitations. The presence of SMGs, especially bacterial antibiotic resistance genes, in transgenic crops is criticized. Fortunately, several genes isolated from plants are available that can serve as SMGs. Here, I review the plant genes reported to have been used as SMGs. Some are wild-type genes that, when overexpressed, confer a selective advantage during in vitro plant regeneration, whereas some are mutated genes encoding enzymes resistant to inhibitory chemicals. Most of the genes have not yet been tested in a significant number of species. The effect of SMGs expression on the phenotype has often been superficially examined and should be better characterized. The sequence conservation of some SMGs could allow derivation of a SMGs from any plant species, if an intragenic or cisgenic approach to genetic engineering is preferred. I conclude that several promising SMGs have been isolated from plants, allowing avoidance of bacterial genes for transformation, transgene stacking, and intragenic or cisgenic engineering approaches. Nonetheless, further testing in more plant species would be useful to fully assess phenotypic neutrality, efficiency, and versatility. Patent rights restrict the immediate use of most plant SMGs for commercial applications, but freely available marker systems do exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson M.; Trifonova A.; Andersson A. B.; Johansson M.; Bulow L.; Hofvander P. A novel selection system for potato transformation using a mutated AHAS gene. Plant Cell Rep. 22: 261–267; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Arias R. S.; Filichkin S. A.; Strauss S. H. Divide and conquer: development and cell cycle genes in plant transformation. Trends Biotechnol. 24: 267–273; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Aufsatz W.; Nehlin L.; Voronin V.; Schmidt A.; Matzke A. J.; Matzke M. A novel strategy for obtaining kanamycin resistance in Arabidopsis thaliana by silencing an endogenous gene encoding a putative chloroplast transporter. Biotechnol. J. 4: 224–229; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Avonce N.; Leyman B.; Mascorro-gallardo O.; Dijck P. V.; Thevelein J.; Iturriaga G. The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose. ABA and stress signalling. Plant Physiol. 136: 3649–3659; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Barone P.; Widholm J. Use of 4-methylindole or 7-methyl-DL-tryptophan in a transformant selection system based on the feedback-insensitive anthranilate synthase α-subunit of tobacco (ASA2). Plant Cell Rep. 27: 509–517; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar M.; Prasad K.; Bhatnagar-Mathur P.; Narasu M. L.; Waliyar F.; Sharma K. K. An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Rep. 29: 495–502; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Bombale S. L.; Gowda P. H. R.; Gunnaiah R.; Malatheshaiah N. T.; Salome T.; Swamidatta S. H. In vitro regeneration and transformation of muskmelon (Cucumis melo L.) with alternative AtWBC19 marker gene. Intl J Biotechnol Biochem 6: 1–12; 2010.

    Article  Google Scholar 

  • Brasileiro A. C. M.; Tourneur C.; Leplt J.-C.; Combes V.; Jouanin L. Expression of the mutant Arabidopsis thaliana acetolactate synthase gene confers chlorsulfuron resistance to transgenic poplar plants. Transgenic Res. 1: 133–141; 1992.

    Article  CAS  Google Scholar 

  • Burris K.; Mentewab A.; Ripp S.; Stewart Jr. C. N. An Arabidopsis thaliana ABC transporter that confers kanamycin resistance in transgenic plants does not endow resistance to Escherichia coli. Microb. Biotechnol. 1: 191–195; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Charest P. J.; Hattori J.; DeMoor J.; Iyer V. N.; Miki B. L. In vitro study of transgenic tobacco expressing Arabidopsis wild type and mutant acetohydroxyacid synthase genes. Plant Cell Rep. 8: 643–646; 1990.

    Article  CAS  Google Scholar 

  • Charng Y.; Li K.; Tai H.; Lin N.; Tu J. An inducible transposon system to terminate the function of a selectable marker in transgenic plants. Mol. Breed. 21: 359–368; 2008.

    Article  CAS  Google Scholar 

  • Cho H.; Brotherton J. E.; Widholm J. M. Use of the tobacco feedback-insensitive anthranilate synthase gene (ASA2) as a selectable marker for legume hairy root transformation. Plant Cell Rep. 23: 104–113; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Conte S. S.; Lloyd A. M. Exploring multiple drug and herbicide resistance in plants - Spotlight on transporter proteins. Plant Sci. 180: 196–203; 2011.

    Article  PubMed  CAS  Google Scholar 

  • Craig W.; Lenzi P.; Scotti N.; De Palma M.; Saggese P.; Carbone V.; Curran N. M. et al. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance. Transgenic Res. 17: 769–782; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Daniell H.; Muthukumar B.; Lee S. B. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr. Genet. 39: 109–116; 2001.

    Article  PubMed  CAS  Google Scholar 

  • de Vetten N.; Wolters A. M.; Raemakers K.; van der Meer I.; ter Stege R.; Heeres E.; Heeres P.; Visser R. A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat. Biotechnol. 21: 439–442; 2003.

    Article  PubMed  Google Scholar 

  • Di Fiore S.; Li Q.; Leech M. J.; Schuster F.; Emans N.; Fischer R.; Schillberg S. Targeting tryptophan decarboxylase to selected subcellular compartments of tobacco plants affects enzyme stability and in vivo function and leads to a lesion-mimic phenotype. Plant Physiol. 129: 1160–1169; 2002.

    Article  PubMed  Google Scholar 

  • Dix P. J.; Kavanagh T. A. Transforming the plastome: genetic markers and DNA delivery systems. Euphytica 85: 29–34; 1995.

    Article  CAS  Google Scholar 

  • Doshi K. M.; Eudes E.; Laroche A.; Gaudet D. Anthocyanin expression in marker free transgenic wheat and triticale embryos. In Vitro Cell. Dev. Biol. Plant 43: 429–435; 2007.

    Article  CAS  Google Scholar 

  • EFSA. Statement of the scientific panel on genetically modified organisms on the safe use of the nptII antibiotic resistance marker gene in genetically modified plants. http://www.efsa.europa.eu.; 2007

  • Ferradini N.; Nicolia A.; Capomaccio S.; Veronesi F.; Rosellini D. A point mutation in the Medicago sativa GSA gene provides a novel, efficient, selectable marker for plant genetic engineering. 2011 (submitted)

  • Fromm M. E.; Morrish F.; Armstrong C.; Williams R.; Thomas J.; Klein T. M. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Bio/Technology 8: 833–839; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Gabard J. M.; Charest P. J.; Iyer V. N.; Miki B. L. Cross-resistance to short residual sulfonylurea herbicides in transgenic tobacco plants. Plant Physiol. 91: 574–580; 1989.

    Article  PubMed  CAS  Google Scholar 

  • Ganapathi T. R.; Higgs N. S.; Balint-Kurti P. J.; Arntzen C. J.; May G. D.; Van Eck J. M. Agrobacterium-mediated transformation of embryogenic cell suspensions of the banana cultivar Rasthali (AAB). Plant Cell Rep. 20: 157–162; 2001.

    Article  CAS  Google Scholar 

  • Goddijn O.; van der Duyn Schouten P.; Schilperoort R.; Hoge J. A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant Mol. Biol. 22: 907–912; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Gough K. C.; Hawes W. S.; Kilpatrick J.; Whitelam G. C. Cyanobacterial GR6 glutamate-1-semialdehyde aminotransferase: a novel enzyme-based selectable marker for plant transformation. Plant Cell Rep. 20: 296–300; 2001.

    Article  CAS  Google Scholar 

  • Guillet G.; Poupart J.; Basurco J.; De Luca V. Expression of tryptophan decarboxylase and tyrosine decarboxylase genes in tobacco results in altered biochemical and physiological phenotypes. Plant Physiol. 122: 933–944; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Hou C.-X.; Dirk L. M. A.; Goodman J. P.; Williams M. A. Metabolism of the peptide deformylase inhibitor actinonin in tobacco. Weed Sci. 54: 246–254; 2006.

    CAS  Google Scholar 

  • Hou C.-X.; Dirk L. M. A.; Pattanaik S.; Das N. C.; Maiti I. B.; Houtz R. L.; Williams M. A. Plant peptide deformylase: a novel selectable marker and herbicide target based on essential cotranslational chloroplast protein processing. Plant Biotech J 5: 275–281; 2007.

    Article  CAS  Google Scholar 

  • Howe A. R.; Gasser C. S.; Brown S. M.; Padgette S. R.; Hart J.; Parker G. B.; Fromm M. E.; Armstrong C. L. Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays L.) plants. Mol. Breed. 10: 153–164; 2002.

    Article  CAS  Google Scholar 

  • Hsiao P.; Sanjaya; Su R. C.; da Silva J. A. T.; Chan M. T. Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation. Planta 225: 897–906; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen E.; Schouten H. J. Cisgenesis strongly improves introgression breeding and induced translocation breeding of plants. Trends Biotech. 25: 219–223; 2007.

    Article  CAS  Google Scholar 

  • Jia H.; Liao M.; Verbelen J. P.; Vissenberg K. Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep. 26: 1961–1965; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Joersbo M.; Donaldson I.; Kreiberg J.; Petersen S. G.; Brunstedt J. Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4: 111–117; 1998.

    Article  CAS  Google Scholar 

  • Kang B.; Ye X.; Osburn L.; Stewart C.; Cheng Z. Transgenic hybrid aspen overexpressing the Atwbc19 gene encoding an ATP-binding cassette transporter confers resistance to four aminoglycoside antibiotics. Plant Cell Rep. 29: 643–650; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Kawagishi-Kobayashi M.; Yabe N.; Tsuchiya M.; Harada S.; Kobayashi T.; Komeda Y.; Wakasa K. Rice OASA1D, a mutant anthranilate synthase a subunit gene, is an effective selectable marker for transformation of Arabidopsis thaliana. Plant Biotechnol. 22: 271–276; 2005.

    Article  CAS  Google Scholar 

  • Kawai K.; Kaku K.; Izawa N.; Sinmizu T.; Fukuda A.; Tanaka Y. A novel mutant acetolactate synthase gene from rice cells, which confers resistance to ALS-inhibiting herbicides. J. Pesticide Sci. 32: 89–98; 2007.

    Article  CAS  Google Scholar 

  • Kim C. Y.; Ahn Y. O.; Kim S. H.; Kim Y.; Lee H.; Catanach A. S.; Jacobs J. M. E.; Conner A. J.; Kwak S. The sweet potato IbMYB1 gene as a potential visible marker for sweet potato intragenic vector system. Physiol. Plant. 139: 229–240; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Koizumi N. A chimeric tunicamycin resistance gene as a new selectable marker for Arabidopsis thaliana. Plant Biotechnol. 20: 305–309; 2003.

    Article  CAS  Google Scholar 

  • Lee K. Y.; Townsend J.; Tepperman J.; Black M.; Chui C.-F.; Mazur B.; Dunsmuir P.; Bedbrook J. The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J. 7: 1241–1248; 1988.

    PubMed  CAS  Google Scholar 

  • Leyman B.; Avonce N.; Ramon M.; Dijck P. V.; Iturriaga G.; Thevelein J. M. Trehalose-6-phosphate synthase as an intrinsic selection marker for plant transformation. J. Biotechnol. 121: 309–331; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Li Z.; Hayashimoto A.; Murai N. A sulfonylurea herbicide resistance gene from Arabidopsis thaliana as a new selectable marker for production of fertile transgenic rice plants. Plant Physiol. 100: 662–668; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Luo K.; Zheng X.; Chen Y.; Xiao Y.; Zhao D.; McAvoy R.; Pei Y.; Li Y. The maize Knotted1 gene is an effective positive selectable marker gene for Agrobacterium-mediated tobacco transformation. Plant Cell Rep. 25: 403–409; 2006.

    Article  PubMed  CAS  Google Scholar 

  • McHughen A. Agrobacterium-mediated transfer of chlorsulfuron resistance to commercial flax cultivars. Plant Cell Rep. 8: 445–449; 1989.

    Article  CAS  Google Scholar 

  • Mentewab A.; Stewart C. Overexpression of an Arabidopsis thaliana ABC transporter confers kanamycin resistance to transgenic plants. Nat. Biotechnol. 23: 1177–1180; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Midorikawa K.; Nagatoshi Y.; Nakamura T. A selection system for transgenic Arabidopsis thaliana using potassium thiocyanate as the selective agent and AtHOL1 as the selective marker. Plant biotechnol. 26: 341–344; 2009.

    Article  CAS  Google Scholar 

  • Miki B.; McHugh S. Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 107: 193–232; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen K. M. Transgenic organisms – time for conceptual diversification? Nat. Biotechnol. 21: 227–228; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura A.; Ashikari M.; Lin S.; Takashi T.; Angeles E. R.; Yamamoto T.; Matsuoka M. Isolation of a rice regeneration quantitative trait loci gene and its application to transformation system. Proc. Natl. Acad. Sci. U. S. A. 102: 11940–11944; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura A.; Aichi I.; Matsuoka M. A protocol for Agrobacterium-mediated transformation in rice. Nat. Protoc. 1: 2796–2802; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T.; Kawahigashi H.; Toki S.; Handa H. Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker. Plant Cell Rep. 27: 1325–1331; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Okuzaki A.; Shimizu T.; Kaku K.; Kawai K.; Toriyama K. A novel mutated acetolactate synthase gene conferring specific resistance to pyrimidinyl carboxy herbicides in rice. Plant Mol. Biol. 64: 219–224; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Olszewski N. E.; Martin F. B.; Ausubel F. M. Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tabacum. Nucleic Acids Res. 16: 10765–10782; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Osakabe K.; Endo M.; Kawai K.; Nishizawa Y.; Ono K.; Abe K.; Ishikawa Y.; Nakamura H.; Ichikawa H.; Nishimura S.; Shimizu T.; Toki S. The mutant form of acetolactate synthase genomic DNA from rice is an efficient selectable marker for genetic transformation. Mol. Breed. 16: 313–320; 2005.

    Article  CAS  Google Scholar 

  • Ozawa K.; Kawahigashi H. Positional cloning of the nitrite reductase gene associated with good growth and regeneration ability of calli and establishment of a new selection system for Agrobacterium-mediated transformation in rice (Oryza sativa L.). Plant Sci. 170: 384–393; 2006.

    Article  CAS  Google Scholar 

  • Padidam M. Chemically regulated gene expression in plants. Curr. Opin. Plant Biol. 6: 169–177; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Popelka J. C.; Xu J.; Altpeter F. Generation of rye (Secale cereale L.) plants with low transgene copy number after biolistic gene transfer and production of instantly marker-free transgenic rye. Transgenic Res. 12: 587–596; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Rajasekaran K.; Grula J. W.; Hudspeth R. L.; Pofelis S.; Anderson D. M. Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol. Breed. 2: 307–319; 1996.

    Article  CAS  Google Scholar 

  • Ramessar K.; Peremarti A.; Gomez-Galera S.; Naqvi S.; Moralejo M.; Munoz P.; Capell T.; Christou P. Biosafety and risk assessment framework for selectable marker genes in transgenic crop plants: a case of the science not supporting the politics. Transgenic Res. 16: 261–280; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Ray K.; Jagannath A.; Gangwani S. A.; Burma P. K.; Pental D. Mutant acetolactate synthase gene is an efficient in vitro selectable marker for the genetic transformation of Brassica juncea (oilseed mustard). J. Plant Physiol. 161: 1079–1083; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Rommens C. M. Kanamycin resistance in plants: an unexpected trait controlled by a potentially multifaceted gene. Trends Plant Sci. 11: 317–319; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Rosellini D.; Capomaccio S.; Ferradini N.; Savo Sadaro M. L.; Nicolia A.; Veronesi F. Non-antibiotic, efficient selection for alfalfa genetic engineering. Plant Cell Rep. 26: 1035–1044; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Saini H. S.; Koonjul K. P.; Attieh J. M. Thiol methyltransferase based selection. Canadian patent WO/2005/087933; 2005.

  • Simmonds J.; Cass L.; Routly E.; Hubbard K.; Donaldson P.; Bancroft B.; Davidson A.; Hubbard S.; Simmonds D. Oxalate oxidase: a novel reporter gene for monocot and dicot transformations. Mol. Breed. 13: 79–91; 2004.

    Article  CAS  Google Scholar 

  • Song G.; Sink K.; Ma Y.; Herlache T.; Hancock J.; Loescher W. A novel mannose-based selection system for plant transformation using celery mannose-6-phosphate reductase gene. Plant Cell Rep. 29: 163–172; 2010.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava V.; Gidoni D. Site-specific gene integration technologies for crop improvement. In vitro Cell. Devel. Biol. Plant 46: 219–232; 2010.

    Article  CAS  Google Scholar 

  • Tan S.; Evans R. R.; Dahmer M. L.; Singh B. K.; Shaner D. L. Imidazolinone-tolerant crops: history, current status and future. Pest Manage. Sci. 61: 246–257; 2005.

    Article  CAS  Google Scholar 

  • Tougou M.; Yamagishi N.; Furutani N.; Kaku K.; Shimizu T.; Takahata Y.; Sakai J.; Kanematsu S.; Hidaka S. The application of the mutated acetolactate synthase gene from rice as the selectable marker gene in the production of transgenic soybeans. Plant Cell Rep. 28: 769–776; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Townsend J. A.; Wright D. A.; Winfrey R. J.; Fu F. L.; Maeder M. L.; Joung J. K.; Voytas D. F. High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459: 442–445; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Wakasa Y.; Ozawa K.; Takaiwa F. Agrobacterium-mediated transformation of a low glutelin mutant of ‘Koshihikari’ rice variety using the mutated-acetolactate synthase gene derived from rice genome as a selectable marker. Plant Cell Rep. 26: 1567–1573; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Weeks J.; Ye J.; Rommens C. Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res. 17: 587–597; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Yamada T.; Tozawa Y.; Hasegawa H.; Terakawa T.; Ohkawa Y.; Wakasa K. Use of a feedback-insensitive alpha subunit of anthranilate synthase as a selectable marker for transformation of rice and potato. Mol. Breed. 14: 363–373; 2004.

    Article  CAS  Google Scholar 

  • Yao K.; De Luca V.; Brisson N. Creation of an artificial metabolic sink for tryptophan modifies the accumulation of phenylpropanoid compounds in potato and causes altered susceptibility to Phytophtora infestans. Plant Cell 7: 1787–1799; 1995.

    Article  PubMed  CAS  Google Scholar 

  • You S.; Liau C.; Huang H.; Feng T.; Prasad V.; Hsiao H.; Lu J.; Chan M. Sweet pepper ferredoxin-like protein (pflp) gene as a novel selection marker for orchid transformation. Planta 217: 60–65; 2003.

    PubMed  CAS  Google Scholar 

  • Zhang Y. S.; Yin X. Y.; Yang A. F.; Li G. S.; Zhang J. R. Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica 144: 11–22; 2005.

    Article  CAS  Google Scholar 

  • Zhu Z.; Wu R. Regeneration of transgenic rice plants using high salt for selection without the need for antibiotics or herbicides. Plant Sci. 174: 519–523; 2008.

    Article  CAS  Google Scholar 

  • Zuo J.; Niu Q.-W.; Chua N. H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24: 265–273; 2000.

    Article  PubMed  CAS  Google Scholar 

  • Zuo J.; Niu Q.; Ikeda Y.; Chua N. Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr. Opin. Biotechnol. 13: 173–180; 2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Italian Ministry of University and Science, project: Impact of genetic engineering on the alfalfa genome and strategies to reduce it, PRIN 2007. I am grateful to Alessandro Nicolia, Nicoletta Ferradini and Fabio Veronesi, Dipartimento di Biologia Applicata, Università degli Studi di Perugia, Italy, for useful discussions. Alessandro also helped me with the literature search. Special thanks to Monica Schmidt, Donald Danforth Plant Science Center, St. Louis, MO, USA, for proposing that I write this review and for her critical reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Rosellini.

Additional information

Editor: N.J. Taylor

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosellini, D. Selectable marker genes from plants: reliability and potential. In Vitro Cell.Dev.Biol.-Plant 47, 222–233 (2011). https://doi.org/10.1007/s11627-011-9348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-011-9348-5

Keywords

Navigation