Skip to main content
Log in

The maize Knotted1 gene is an effective positive selectable marker gene for Agrobacterium-mediated tobacco transformation

  • Genetic Transformation and Hybridization
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

We have assessed the use of a homeobox gene knotted1 (kn1) from maize as a selectable marker gene for plant transformation. The kn1 gene under the control of cauliflower mosaic virus 35S promoter (35S::kn1) was introduced into Nicotiana tabacum cv. Xanthi via Agrobacterium-mediated transformation. Under nonselective conditions (without antibiotic selection) on a hormone-free medium (MS), a large number of transgenic calli and shoots were obtained from explants that were infected with Agrobacterium tumefaciens LBA4404 harboring the 35S::kn1 gene. On the other hand, no calli or shoots were produced from explants that were infected with an Agrobacterium strain harboring pBI121 (nptII selection) or from uninfected controls cultured under identical conditions. Relative to kanamycin selection conferred by nptII, the use of kn1 resulted in a 3-fold increase in transformation efficiency. The transgenic status of shoots obtained was confirmed by both histochemical detection of GUS activity and molecular analysis. The results presented here suggest that kn1 gene could be used as an effective alternative selection marker with a potential to enhance plant transformation efficiency in many plant species. With kn1 gene as a selection marker gene, no antibiotic-resistance or herbicide-resistance genes are needed so that potential risks associated with the use of these traditional selection marker genes can be eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CaMV 35S :

cauliflower mosaic virus 35S

kn1 :

Knotted1 gene

ipt :

Isopentenyl transferase

BA :

Benzylaminopurine

NAA :

Naphthaleneacetic acid

NPTII :

Neomycin phosphotransferase

MS Medium :

Musashige & Skoog medium

GUS :

β-glucuronidase

References

  • Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MPT (1984) DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci USA 81:5994–5998

    Article  PubMed  CAS  Google Scholar 

  • Angela H, David J, Naomi O, Sarah H (2003) Analysis of the competence to respond to KNOTTED1 activity in Arabidopsis leaves using a steroid induction system. Plant Physiol 131:1671–1681

    Article  Google Scholar 

  • Catlin DW (1990) The effect of antibiotics on the inhibition of callus induction and plant regeneration from cotyledons of sugarbeet (Beta vulgaris L.). Plant Cell Rep 9:285–288

    Article  CAS  Google Scholar 

  • Christy MC, Sinclair BK, Braun RH (1997) Regeneration of transgenic vegetable brassicas (Brassica oleracea and B. campestrei) via Ri-mediated transformation. Plant Cell Rep 16:587–593

    Google Scholar 

  • Chuck G, Lincoln C, Hake S (1996) Knat1 induces lobed leaves with ectopic meristems when overexpressed in Arabidopsis. Plant Cell 8:1277–1289

    Article  PubMed  CAS  Google Scholar 

  • Dale EC, Ow DW (1991) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci USA 88:10558–10562

    Article  PubMed  CAS  Google Scholar 

  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotech 20:567–574

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E, Yamakado M (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci USA 94:2117–2121

    Article  PubMed  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Endo S, Matsunaga E, Yamada K (2005) Elimination of marker genes from transgenic plants using MAT vector systems. Methods Mol Biol 286:237–254

    PubMed  CAS  Google Scholar 

  • Endo S, Kasahara T, Sugita K (2001) The isopentenyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabacum cv. Petite Havana SRI). Plant Cell Rep 20:60–66

    Article  CAS  Google Scholar 

  • Endo S, Sugita K, Sakai M, Tanaka H, Ebinuma H (2002) Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system. Plant J 30(1):115–122

    Article  PubMed  CAS  Google Scholar 

  • Endrizzi K, Moussian B, Haecker A, Levin JZ, Laux T (1996) The SHOOT MERISTEMLESS meristems and acts at a different regulatory level than meristem genes WUSCHEL and ZWILLE. Plant J 10:967–979

    Article  PubMed  CAS  Google Scholar 

  • Estruch JJ, Prinsen E, van Onckelen H, Schell J, Spena A (1991) Viviparous leaves produced by somatic activation of an inactive cytokinin-synthesizing gene. Science 254:1364–1367

    Article  PubMed  CAS  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition-mediated repositioning and subsequent elimination of marker genes from transgenic tomato. Biotechnology 11:1286–1292

    CAS  Google Scholar 

  • Hake S, Smith HMS, Magnani E, Holtan H, Mele G, Ramirez J (2004) The role of knox genes in plant development. Ann Rev Cell Dev Biol 20:125–151

    Article  CAS  Google Scholar 

  • Hareven D, Gutfinger T, Parnis A, Eshed Y, Lifschitz E (1996) The making of a compound leaf: genetic manipulation of leaf architecture in tomato. Cell 84:735–744

    Article  PubMed  CAS  Google Scholar 

  • Höfgen R, Willmizer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124:3045–3054

    PubMed  CAS  Google Scholar 

  • Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–709

    Article  PubMed  CAS  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T (1996) Vectors carrying two separate T-DNAs for cotransformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10:165–174

    Article  PubMed  CAS  Google Scholar 

  • Kunkel T, Niu QW, Chan YS, Chua NH (1999) Inducible isopentenyl transferase as a high-efficiency marker for plant transformation. Nat Biotechnol 17:916–919

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Hagen G, Guilfoyle TJ (1991) An auxin-responsive promoter is differentially induced by auxin gradients during tropisms. Plant Cell 3:1167–1175

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Hagen G, Guilfoyle TJ (1992) Altered morphology in transgenic tobacco plants that overproduce cytokinins in specific tissues and organs. Dev Biol 153:386–395

    Article  PubMed  CAS  Google Scholar 

  • Lincoln C, Long J, Yamaguchi J, Serikawa K, Hake S (1994) A Knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6: 1859–1876

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Mihálka V, Balazs E, Nagy I (2003) Binary transformation systems based on ‘shooter’ mutants of Agrobacterium tumefaciens: a simple, efficient, and universal gene transfer technology that permits marker gene elimination. Plant Cell Rep 21:778–784

    PubMed  Google Scholar 

  • Mlynarova L, Nap JP (2003) A self-excising Cre recombinase allows efficient recombination of multiple ectopic heterospecific lox sites in transgenic tobacco. Transgenic Res 12(1):45–57

    Article  PubMed  CAS  Google Scholar 

  • Morten J, Okkels F (1996) A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Rep 16:219–221

    Google Scholar 

  • Müller KJ, Romano N, Gerstner O, Garcia-Maroto F, Pozzi C, Salamini F, Rohde W (1995) The barley Hooded mutation caused by a duplication in a homeobox gene intron. Nature 374:727–730

    Article  PubMed  Google Scholar 

  • O'Kennedy MM, Burger JT, Botha FC (2004) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690

    Article  PubMed  Google Scholar 

  • Penna S, Sági L, Swennen R (2002) Positive selectable marker genes for routine plant transformation. In Vitro Cell Dev Biol – Plant 38:125–128

    Article  CAS  Google Scholar 

  • Russell SH, Hoopes JL, Odell JT (1992) Directed excision of a transgene from the plant genome. Mol Gen Genet 234:49–59

    PubMed  CAS  Google Scholar 

  • Sinha NR, Williams RE, Hake S (1993) Overexpression of the maize homeobox gene, KNOTTED-1, causes a switch from determinate to indeterminate cell fates. Genes Dev 7:787–795

    Article  PubMed  CAS  Google Scholar 

  • Smigocki A, Owens L (1988) Cytokinin gene fused with a strong promoter enhances shoot organogenesis and zeatin levels in transformed plant cells. Proc Natl Acad Sci USA 85:5131–5135

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116:21–30

    PubMed  CAS  Google Scholar 

  • Sugita K, Matsunaga E, Ebinuma H (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep 18:941–947

    Article  CAS  Google Scholar 

  • Tamaoki M, Kusaba S, Kano-Murakami Y, Matsuoka M (1997) Ectopic expression of a tobacco homeobox gene, NTH15, dramatically alters leaf morphology and hormone levels in transgenic tobacco. Plant Cell Physiol 38:917–927

    PubMed  CAS  Google Scholar 

  • Yoder JI, Golgsbrough AP (1994) Transformation system for generating marker-free transgenic plants. Biotechnology 12:263–267

    Article  CAS  Google Scholar 

  • Zuo J, Chua N-H (2000) Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol 11:146–151

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Ikeda Y, Chua NH (2002) Marker-free transformation: increasing transformation frequency by the use of regeneration-promoting genes. Curr Opin Biotechnol 13:173–180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the National Natural Science Foundation of China (#30300225). The authors would like to thank Dr. Prakash Lakshmanan for his help in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Pei.

Additional information

Communicated by P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, K., Zheng, X., Chen, Y. et al. The maize Knotted1 gene is an effective positive selectable marker gene for Agrobacterium-mediated tobacco transformation. Plant Cell Rep 25, 403–409 (2006). https://doi.org/10.1007/s00299-005-0051-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-005-0051-z

Keywords

Navigation