Skip to main content
Log in

Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The inheritance and stability of the acetolactate synthase (als) transgene were compared in transgenic maize plants, generated using the pollen-tube pathway, particle bombardment, or Agrobacterium-mediated methods of transformation. Progeny populations generated by successive selfing or backcrossing of primary transformants were analyzed over three generations, using PCR and herbicide screening, to examine segregation and als activity, respectively, and transgenic homozygous plants were selected. The pollen-tube method resulted in a higher rate of primary normal transgenic plants and a less-stable transmission of the als locus than did the other two methods. When transferred by the particle bombardment and Agrobacterium-mediated methods, the als gene was in a much higher proportion of Mendelian transmission than transferred by the pollen-tube method. Compared to the Agrobacterium-mediated transformation, the particle bombardment method tends to create multiple copies and insert sites of the als gene in maize genome, which delaying the homogenization of the als locus with advancing generations. Agrobacterium-mediated transformation resulted in a greater proportion of stable, low copy number (in general 1–2) transgenic events, facilitating the stable inheritance of the als gene, and producing multiple desirable transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bohorova, N., W. Zhang, P. Julstrum, S. McLean, B. Luna, R.M. Brito, L. Diaz, M.E. Ramos, P. Estanol, M. Pacheco, M. Salgado & D. Hoisington, 1999. Production of transgenic tropical maize with cryIAb and cryIAc genes via microprojectile bombardment of immature embryos. Theor Appl Genet 99: 437–444.

    Article  Google Scholar 

  • Chong, K., S.L. Bao, T. Xu, K.H. Tan, T.B. Liang, J.Z. Zeng, H.L. Huang, J. Xu & Z.H. Xu, 1998. Functional analysis of the ver gene using antisense transgenic wheat. Physiol Plant 102: 87–92.

    Article  Google Scholar 

  • Duan, X., X. Li, Q. Xue, M. Abo-El-Saad, D. Xu & R. Wu, 1996. Transgenic rice plants harbouring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol 14: 494–498.

    Article  PubMed  Google Scholar 

  • Frame, B., H. Shou, R. Chikwamba, Z. Zhang, C. Xiang, T. Fonger, S. Pegg, B. Li, D. Nettleton, D. Pei & K. Wang, 2002. Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol. 129: 13–22.

    Article  PubMed  Google Scholar 

  • Fromm, M.E., F. Morrish, C. Armstrong, R. Williams, J. Thomas & T.M. Klein, 1990. Inheritance and expression of chimeric genes in the progeny of transgenic maize plants. Biotechnology 8: 833–839.

    Article  PubMed  Google Scholar 

  • Hu, C.Y. & L.Z. Wang, 1999. In planta soybean transformation technologies developed in China: Procedure, confirmation, and field performance. In Vitro Cell Dev Biol Plant 35: 417–420.

    Google Scholar 

  • Huang, G., Y. Dong & J. Sun, 1999. Introduction of exogenous DNA into cotton via pollen-tube pathway with GFP as a reporter. Chin Sci Bull 44: 698–701.

    Google Scholar 

  • Ishida, Y., H. Saito, S. Ohta, Y. Hiei, T. Komari & T. Kumashiro, 1996. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14: 745–750.

    Article  PubMed  Google Scholar 

  • Komari, T., Y. Hiei, Y. Ishida, T. Kumashirot & T. Kubo, 1998. Advances in cereal gene transfer. Curr Opin Plant Biol 1: 161–165.

    Article  PubMed  Google Scholar 

  • Li, S.R., J.R. Zhang & H.M. Chen, 1990. Study on induction of embryogenetic callus and plantlet regeneration in maize. J Shandong Univ 25: 116–124 (in Chinese).

    Google Scholar 

  • Li, G.S., A.F. Yang, J.R. Zhang, Y.P. Bi & L. Shan, 2001. Genetic transformation of calli from maize and regeneration of herbicide-resistant plantlets. Chin Sci Bull 46: 563–565.

    Google Scholar 

  • Luo, Z.X. & R. Wu, 1988. A simple method for the transformation of rice via the pollen-tube pathway. Plant Mol Biol Rep 6: 165–174.

    Google Scholar 

  • Otha, Y., 1986. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci USA 83: 715–719.

    Google Scholar 

  • Peng, J., F. Wen, R.L. Lister & T.K. Hodges, 1995. Inheritance of gusA and neo genes in transgenic rice. Plant Mol Biol 27: 91–104.

    Article  PubMed  Google Scholar 

  • Quan, R.D., M. Shang, H. Zhang, Y.X. Zhao & J.R. Zhang, 2004. Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166: 141–149.

    Article  Google Scholar 

  • Register, J.C., D.J. Peterson, P.J. Bell, W.P. Bullock, E.J. Evans, B. Frame, A.J. Greenland, N.S. Higgs, I. Jepson, S. Jiao, C.J. Lewnau, J.M. Sillick & H.M. Wilson, 1994. Structure and function of selectable and non-selectable transgenes in maize after introduction by particle bombardment. Plant Mol Biol 25: 951–961.

    Article  PubMed  Google Scholar 

  • Scott, A., D. Woodfield & D.W.R. White, 1998. Allelic composition and genetic background effects on transgene expression and inheritance in white clover. Mol Breed 4: 479–490.

    Article  Google Scholar 

  • Wang, J.X., Y. Sun, G.M. Cui & J.J. Hu, 2001. Transgenic maize plants obtained by pollen-mediated transformation. Acta Botanica Sinica 43: 275–279.

    Google Scholar 

  • Wu, G., H. Cui, G. Ye, Y. Xia, R. Sardana, X. Cheng, Y. Li, I. Altosaar & Q. Shu, 2002. Inheritance and expression of the cry1Ab gene in Bt (Bacillus thuringiensis) transgenic rice. Theor Appl Genet 104: 727–734.

    Article  PubMed  Google Scholar 

  • Zeng, J.Z., D.J. Wang, Y.Q. Wu, J. Zhang, W.J. Zhou, X.P. Zhu & N.Z. Xu, 1994. Transgenic wheat plants obtained with pollen-tube pathway method. Sci Chin 37: 319–325.

    Google Scholar 

  • Zeng, J.Z., Y.Q. Wu, D.J. Wang, J. Zhang, Z.R. Ma & Z.Y. Zhou, 1998. Genetic expression in progeny of transgenic plants obtained by using pollen-tube pathway (or delivery) method and approach to the transformation mechanism. Chin Sci Bull 43: 798–803.

    Google Scholar 

  • Zhao, Z., W. Gu, T. Cai, L. Tagliani, D. Hondred, D. Bond, S. Schroeder, M. Rudert & D. Pierce, 2001. High throughput genetic transformation mediated by Agrobacterium tumefaciens in maize. Mol Breed 8: 323–333.

    Article  Google Scholar 

  • Zhou, G., J. Weng, Y. Zeng, J. Huang, S. Qian & G. Liu, 1983. Introduction of exogenous DNA into cotton embryos. Methods Enzymol 101: 433–481.

    PubMed  Google Scholar 

  • Zhou, G., J. Weng, Z. Gong, Y. Zeng, W. Yang, W. Shen, Z. Wang, Q. Tao, J. Huang, S. Qian, G. Liu, M. Ying, D. Xue, A. Hong, Y. Xu, B. Chen & X. Duan, 1988. Molecular breeding of agriculture: A technique for introducing exogenous DNA into plants after self-pollination. Sci Agric Sinica 21: 1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juren Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Yin, X., Yang, A. et al. Stability of inheritance of transgenes in maize (Zea mays L.) lines produced using different transformation methods. Euphytica 144, 11–22 (2005). https://doi.org/10.1007/s10681-005-4560-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-005-4560-1

Key Words

Navigation