Skip to main content
Log in

Development of an in planta method for transformation of alfalfa (Medicago sativa)

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Conventional methods in transforming alfalfa (Medicago sativa) require multiple tissue culture manipulations that are time-consuming and expensive, while applicable only to a few highly regenerable genotypes. Here, we describe a simple in planta method that makes it possible to transform a commercial variety without employing selectable marker genes. Basically, young seedlings are cut at the apical node, cold-treated, and vigorously vortexed in an Agrobacterium suspension also containing sand. About 7% of treated seedlings produced progenies segregating for the T-DNA. The vortex-mediated seedling transformation method was applied to transform alfalfa with an all-native transfer DNA comprising a silencing construct for the caffeic acid o-methyltransferase (Comt) gene. Resulting intragenic plants accumulated reduced levels of the indigestible fiber component lignin that lowers forage quality. The absence of both selectable marker genes and other foreign genetic elements may expedite the governmental approval process for quality-enhanced alfalfa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atlung T, Christensen BB, Hansen FG (1999) Role of the rom protein in copy number control of plasmid pBR322 at different growth rates in Escherichia coli K-12. Plasmid 41:110–119

    Article  PubMed  CAS  Google Scholar 

  • Barton KA, Binns AN, Chilton MM, Matzke AJM (2000) Regeneration of plants containing genetically engineered T-DNA. United States patent 6051757

  • Bent AF (2006) Arabidopsis thaliana Floral dip transformation method. In: Wang K (eds) Methods mol biol. Agrobacterium protocols, vol 343, 2nd edn. Humana Press, Totowa, NJ 87–103

    Google Scholar 

  • Cheng XY, Gao MW, Liang ZQ, Liu GZ, Hu TC (1992) Somaclonal variation in winter wheat: frequency, occurrence and inheritance. Euphytica 64:1–10

    Google Scholar 

  • Christou P, Swain WF, Yang NS, McCabe DE (1989) Inheritance and expression of foreign genes in transgenic soybean plants. Proc Natl Acad Sci USA 86:7500–7504

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Curtis IS, Nam HG (2001) Transgenic radish (Raphanus sativus L. longipinnatus Bailey) by floral-dip method–plant development and surfactant are important in optimizing transformation efficiency. Transgenic Res 10:363–371

    Article  PubMed  CAS  Google Scholar 

  • de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of Agrobacterium-mediated transformation by the Arabidopsis floral-dip method. Plant Physiol 123:895–904

    Article  PubMed  CAS  Google Scholar 

  • Edwards GA (1998) Genetic modification of plant material. World Patent application 9856932A1

  • Fox JL (2007) US courts thwart GM alfalfa and turf grass. Nat Biotechnol 25:367–368

    Article  PubMed  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Guo D, Chen F, Wheeler J, Winder J, Selman S, Peterson M, Dixon RA (2001) Improvement of in-rumen digestibility of alfalfa forage by genetic manipulation of lignin O-methyltransferases. Transgenic Res 10:457–464

    Article  PubMed  CAS  Google Scholar 

  • Harrison MJ, Trieu AT (2000) Plant transformation process. World Patent application 0037663A2

  • Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J, Shi H, Damsz B, Charbaji T, Gong Q, Ma S, Fredricksen M, Galbraith DW, Jenks MA, Rhodes D, Hasegawa PM, Bohnert HJ, Joly RJ, Bressan RA, Zhu JK (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Khoudi H, Vezina LP, Mercier J, Castonguay Y, Allard G, Laberge S (1997) An alfalfa rubisco small subunit homologue shares cis-acting elements with the regulatory sequences of the RbcS-3A gene from pea. Gene 197:343–351

    Article  PubMed  CAS  Google Scholar 

  • Koncz K, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204(3):383–396

    Article  CAS  Google Scholar 

  • Konig A (2003) A framework for designing transgenic crops––science, safety and citizen’s concerns. Nat Biotechnol 21:1274–1279

    Article  PubMed  Google Scholar 

  • Lin J-J, Assad-Garcia N, Kuo J (1994) Effects of Agrobacterium cell concentration on the transformation efficiency of tobacco and Arabidopsis thaliana. Focus 16(3):72–77

    Google Scholar 

  • Liu F, Cao MQ, Li Y, Robaglia C, Tourneur C (1998) In planta transformation of pakchoi (Brassica campestris L ssp Chinensis) by infiltration of adult plants with Agrobacterium. Acta Hort 467:187–192

    Google Scholar 

  • Liu YG, Whittier RF (1995) Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25:674–681

    Article  PubMed  CAS  Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D, Zhao ZY (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11:381–396

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Opabode JT (2006) Agrobacterium-mediated transformation of plants: emerging factors that influence efficiency. Biotechn Mol Biol Rev 1:12–20

    Google Scholar 

  • Pederson JF, Vogel KP, Funnell DL (2005) Impact of reduced lignin of fitness. Crop Sci 45:812–819

    Article  Google Scholar 

  • Rogers SG, Fraley RT (2001) Chimeric genes suitable for expression in plant cells. United States patent 6174724

  • Rommens CM, Bougri O, Yan H, Humara JM, Owen J, Swords K, Ye J (2005) Plant-derived transfer DNAs. Plant Physiol 139:1338–1349

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, Humara JM, Ye J, Yan H, Richael C, Zhang L, Perry R, Swords K (2004) Crop improvement through modification of the plant’s own genome. Plant Physiol 135:421–431

    Article  PubMed  CAS  Google Scholar 

  • Rommens CM, van Haaren MJ, Buchel AS, Mol JN, van Tunen AJ, Nijkamp HJ, Hille J (1992) Transactivation of Ds by Ac-transposase gene fusions in tobacco. Mol Gen Genet 231:433–441

    Article  PubMed  CAS  Google Scholar 

  • Samac DA, Austin-Phillips S (2006) Alfalfa (Medicago sativa L.). In: Wang K (eds) Methods mol biol. Agrobacterium protocols, vol 343, 2nd edn. Humana Press, Totowa, NJ pp 301–311

    Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  PubMed  CAS  Google Scholar 

  • Strauss SH (2003) Genetic technologies. Genomics, genetic engineering, and domestication of crops. Science 300:61–62

    Article  PubMed  CAS  Google Scholar 

  • Tague BW (2001) Germ-line transformation of Arabidopsis lasiocarpa. Transgenic Res 10:259–267

    Article  PubMed  CAS  Google Scholar 

  • Trick HN, Finer JJ(1997) SAAT: Sonication Assisted Agrobacterium-mediated Transformation. Transgenic Res 6:329–336

    Article  CAS  Google Scholar 

  • Trieu AT, Burleigh SH, Kardailsky IV, Maldonado-Mendoza IE, Versaw WK, Blaylock LA, Shin H, Chiou TJ, Katagi H, Dewbre GR, Weigel D, Harrison MJ (2000) Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium. Plant J 22:531–541

    Article  PubMed  CAS  Google Scholar 

  • Yan H, Chretien R, Ye J, Rommens CM (2006) New construct approaches for efficient gene silencing in plants. Plant Physiol 141:1508–1518

    Article  PubMed  CAS  Google Scholar 

  • Zuo JR, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Scott Simplot, Bill Whitacre, and Dr. Kathy Swords for fruitful discussion and support. Serena McCoy, Jeff Hein, and Michele Krucker are acknowledged for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caius M Rommens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weeks, J.T., Ye, J. & Rommens, C.M. Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17, 587–597 (2008). https://doi.org/10.1007/s11248-007-9132-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9132-9

Keywords

Navigation