Skip to main content
Log in

An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.)

  • Original Paper
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Recombinant genes conferring resistance to antibiotics or herbicides are widely used as selectable markers in plant transformation for selecting the primary transgenic events. However, these become redundant once the transgenic plants have been developed and identified. Although, there is no evidence that the selectable marker genes are unsafe for consumers and the environment, it would be desirable if the marker genes can be eliminated from the final transgenic events. The availability of efficient transformation methods can enable the possibility of developing transgenic events that are devoid of the marker gene/s upfront. Taking advantage of the high and consistent transformation potential of peanut, we report a technique for developing its transgenics without the use of any selectable marker gene. Marker-free binary vectors harboring either the phytoene synthase gene from maize (Zmpsy1) or the chitinase gene from rice (Rchit) were constructed and used for Agrobacterium tumefaciens-mediated transformation of peanut. The putative transgenic events growing in vitro were initially identified by PCR and further confirmed for gene integration and expression by dot blots assays, Southern blots, and RT-PCR where they showed a transformation frequency of over 75%. This system is simple, efficient, rapid, and does not require the complex segregation steps and analysis for selection of the transgenic events. This approach for generation of marker-free transgenic plants minimizes the risk of introducing unwanted genetic changes, allows stacking of multiple genes and can be applicable to other plant species that have high shoot regeneration efficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmad R, Kim YH, Kim MD, Phung MN, Chung WI, Lee HS, Kwak SS, Kwon SY (2008) Development of selection marker-free transgenic potato plants with enhanced tolerance to oxidative stress. J Plant Biol 51:401–407

    Article  CAS  Google Scholar 

  • Aragao FJL, Brasileiro ACM (2002) Positive, negative and marker-free strategies for transgenic plant selection. Braz J Plant Physiol 14:1–10

    Article  CAS  Google Scholar 

  • Arumugam N, Gupta V, Jagannath A, Mukhopadhyay A, Pradhan AK, Burma PK, Pental D (2007) A passage through in vitro culture leads to efficient production of marker-free transgenic plants in Brassica juncea using the Cre/loxP system. Transgenic Res 16:703–712

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar-Mathur P, Anjaiah V, Kirti PBK, Sharma KK (2008) Agrobacterium-mediated genetic transformation of peanut. In: Kirti PBK (ed) Handbook of new technologies for genetic improvement of legumes. CRC Press, USA, pp 227–251

    Chapter  Google Scholar 

  • Bryant J, Leather S (1992) Removal of selectable marker genes from transgenic plants: needless sophistication or social necessity. Trends Biotechnol 10:274–275

    Article  Google Scholar 

  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nat Biotechnol 20:567–574

    Article  PubMed  CAS  Google Scholar 

  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581–586

    Article  PubMed  CAS  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CN, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  PubMed  CAS  Google Scholar 

  • de Vetten N, Wolters AM, Raemakers K, van der Meer I, ter Stege R, Heeres E, Heeres P, Visser R (2003) A transformation method for obtaining marker-free plants of a cross pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Dellaporta SJ, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 4:19–21

    Article  Google Scholar 

  • Doshi KM, Eudes E, Laroche A, Gaudet D (2007) Anthocyanin expression in marker free transgenic wheat and triticale embryos. In Vitro Cell Dev Biol -Plant 43:429–435

    Article  CAS  Google Scholar 

  • Doyle JJ (1991) DNA protocols for plants—CTAB total DNA isolation. In: Hewitt GM, Johnston A (eds) Molecular techniques in taxonomy. Springer, Berlin, pp 283–293

    Google Scholar 

  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2008) A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci 175:423–430

    Article  CAS  Google Scholar 

  • Ebinuma H, Komamine A (2001) MAT (multi-auto-transformation) vector system. The oncogenes of Agrobacterium as positive markers for regeneration and selection of marker-free transgenic plants. In Vitro Cell Dev Biol Plant 37:103–113

    Article  CAS  Google Scholar 

  • Gleave AP, Mitra DS, Mudge SR, Morris BAM (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40:223–235

    Article  PubMed  CAS  Google Scholar 

  • Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13:247–261

    Article  PubMed  CAS  Google Scholar 

  • Goldsbrough AP, Lastrella CN, Yoder JI (1993) Transposition mediated re-positioning and subsequent elimination of marker gene from transgenic tomato. Biotechnol 11:1286–1292

    CAS  Google Scholar 

  • Gressel J (1992) Indiscriminate use of selectable markers—sowing wild oats? Trends Biotechnol 10:382

    Article  Google Scholar 

  • Jia H, Liao M, Verbelen JP, Vissenberg K (2007) Direct creation of marker-free tobacco plants from agroinfiltrated leaf discs. Plant Cell Rep 26:1961–1965

    Article  PubMed  CAS  Google Scholar 

  • Kim SI, Veena, Gelvin SB (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under non-selective conditions. Plant J 51:779–791

    Article  PubMed  CAS  Google Scholar 

  • Kuiper HA, Kleter GA, Noteborn HPJM, Kok EJ (2001) Assessment of the food safety issues related to genetically modified foods. Plant J 27:503–528

    Article  PubMed  CAS  Google Scholar 

  • Li B, Xie C, Qiu H (2009) Production of selectable marker-free transgenic tobacco plants using a non-selection approach: chimerism or escape, transgene inheritance, and efficiency. Plant Cell Rep 28:373–386

    Article  PubMed  CAS  Google Scholar 

  • Malnoy M, Borejsza-Wysocka EE, Abbott P, Lewis S, Norelli JL, Flaishman M, Gidoni D, Aldwinckle HS (2007) Genetic transformation of apple without use of a selectable marker. Acta Hortic 738:319–322

    Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  PubMed  CAS  Google Scholar 

  • Miki B, Abdeen A, Manabe Y, MacDonald P (2009) Selectable marker genes and unintended changes to the plant transcriptome. Plant Biotechnol J 7:211–218

    Article  PubMed  CAS  Google Scholar 

  • Ow DW (2001) The right chemistry for marker gene removal? Nat Biotechnol 19:115–116

    Article  PubMed  CAS  Google Scholar 

  • Popelka JC, Xu J, Altpeter F (2003) Generation of rye (Secale cereale L.) plants with low transgene copy number after biolistic gene transfer and production of instantly marker-free transgenic rye. Transgenic Res 12:587–596

    Article  PubMed  CAS  Google Scholar 

  • Puchta H (2003) Marker-free transgenic plants. Plant Cell Tissue Org Cult 74:123–134

    Article  CAS  Google Scholar 

  • Rosellini D, Capomaccio S, Ferradini N, Sardaro MLS, Nicolia A, Veronesi F (2007) Non-antibiotic, efficient selection for alfalfa genetic engineering. Plant Cell Rep 26:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Saelim L, Phansiri S, Suksangpanomrung M, Netrphan S, Narangajavana J (2009) Evaluation of a morphological marker selection and excision system to generate marker-free transgenic cassava plants. Plant Cell Rep 28:445–455

    Article  PubMed  CAS  Google Scholar 

  • Schaart JG, Krens FA, Pelgrom KTB, Mendes O, Rouwendal GJA (2004) Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. Plant Biotechnol J 2:233–240

    Article  PubMed  CAS  Google Scholar 

  • Scutt CP, Zubko E, Meyer P (2002) Techniques for the removal of marker genes from transgenic plants. Biochimie 84:1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Sharma KK, Anjaiah V (2000) An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation. Plant Sci 159:7–19

    Article  PubMed  CAS  Google Scholar 

  • Sharma KK, Bhatnagar-Mathur P (2006) Peanut (Arachis hypogaea L.). Methods in Mol Biol 343:347–358

    Google Scholar 

  • Smyth S, Khachatourians GG, Phillips PWB (2002) Liabilities and economics of transgenic crops. Nat Biotechnol 20:537–541

    Article  PubMed  CAS  Google Scholar 

  • Sugita K, Matsunaga E, Ebinuma H (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep 18:941–947

    Article  CAS  Google Scholar 

  • Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Mourrain P, Palauqui JC, Vernhettes S (1998) Transgene-induced gene silencing in plants. Plant J 16:651–659

    Article  PubMed  CAS  Google Scholar 

  • Weeks JT, Ye J, Rommens CM (2008) Development of an in planta method for transformation of alfalfa (Medicago sativa). Transgenic Res 17:587–597

    Article  PubMed  CAS  Google Scholar 

  • Yoder JI, Goldsbrough AP (1994) Transformation system for generating marker-free transgenic plants. Biotechnology 12:263–267

    Article  CAS  Google Scholar 

  • Zuo J, Niu QW, Moller SG, Chua NH (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support from HarvestPlus, the global Challenge Program on Biofortification for part of this work. MB and KP would like to thank the Jawaharlal Nehru Technological University (JNTU), Hyderabad, India for providing an opportunity to register for Ph.D. program. The excellent assistance by the technical staff of the Genetic Transformation laboratory at ICRISAT is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran K. Sharma.

Additional information

Communicated by P. Kumar.

M. Bhatnagar and K. Prasad contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatnagar, M., Prasad, K., Bhatnagar-Mathur, P. et al. An efficient method for the production of marker-free transgenic plants of peanut (Arachis hypogaea L.). Plant Cell Rep 29, 495–502 (2010). https://doi.org/10.1007/s00299-010-0838-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-010-0838-4

Keywords

Navigation