Skip to main content

Advertisement

Log in

Strategies for the in vitro production of antiaddictive ibogan type alkaloids from Apocynaceae species

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Monoterpenoid indole alkaloids (MIAs) of the ibogan type, such as ibogaine, have shown promising antiaddictive effects against several drugs of abuse in humans and animal models of addiction. Unfortunately, international ibogaine demand has led to the overexploitation of natural populations of the African species Tabernanthe iboga (Apocynaceae), the main source of this alkaloid. Therefore, it is necessary to identify alternative ibogan type alkaloid-containing plant species, as well as to develop new sustainable production systems for said group of pharmaceutically important compounds. In this review, we focus on strategies for the in vitro production of the antiaddictive ibogan type MIAs coronaridine, ibogamine, voacangine, and ibogaine (collectively named “CIVI-complex”) from Apocynaceae species, with particular emphasis on the Tabernaemontana genus. Since plant tissue culture (PTC)-related information on the CIVI-complex is scarce, we also consider reports on the in vitro production of other ibogan type MIAs and where necessary, of compounds belonging to the aspidospermatan, corynanthean, and plumeran type.

Key message

This review aims at giving an overview of potential strategies to produce antiaddictive ibogan type alkaloids from in vitro cultures of Apocynaceae species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

7-DLGT:

7-deoxyloganetic acid glucosyltransferase

7-DLH:

7-deoxyloganic acid hydroxylase

8-HGO:

8-hydroxygeraniol oxidoreductase

ASO:

O-acetylstemmadenine oxidase

BA:

Benzyladenine

CC:

Callus culture

CCC:

Compact callus cluster

CIVI:

Coronaridine-ibogamine-voacangine-ibogaine

CNS:

Central nervous system

CSC:

Cell suspension culture

G8O:

Geraniol-8-oxidase

GDNF:

Glial cell line-derived neurotrophic factor

GES:

Geraniol synthase

G(G)PPS:

Geranyl(geranyl) diphosphate synthase

GO:

Geissoschizine oxidase

GS:

Geissoschizine synthase

HL1:

Hydrolase 1

HRC:

Hairy root culture

I10H:

Ibogamine 10-hydroxylase

IAA:

Indoleacetic acid

IBA:

Indolebutyric acid

IO:

Iridoid oxidase

IPAP:

Internal phloem-associated parenchyma

IS:

Iridoid synthase

JA:

Jasmonic acid

LAMT:

Loganic acid-O-methyltransferase

MeJA:

Methyl jasmonate

MEP:

Methylerythritol phosphate

MIA:

Monoterpenoid indole alkaloid

N10OMT:

Noribogaine-10-O-methyltransferase

NAA:

1-Naphthaleneacetic acid

NMDA:

N-methyl-D-aspartate

PGR:

Plant growth regulator

PTC:

Plant tissue culture

SA:

Salicylic acid

SAR:

Systemic acquired resistance

SAT:

Stemmadenine O-acetyltransferase

SGD:

Strictosidine β-glucosidase

SLS:

Secologanin synthase

STR:

Strictosidine synthase

TDC:

Tryptophan decarboxylase

References

  • Almagro L, Sottomayor M, Pedreño MA (2013) Bioproduction of terpenoid indole alkaloids from Catharanthus roseus cell cultures. In: Ramawat KG, Mérillon JM (eds) Natural products. Phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Berlin, pp 85–117

    Google Scholar 

  • Almagro L, Gutiérrez J, Pedreño MA, Sottomayor M (2014) Synergistic and additive influence of cyclodextrins and methyl jasmonate on the expression of the terpenoid indole alkaloid pathway genes and metabolites in Catharanthus roseus cell cultures. Plant Cell, Tissue Organ Cult 119(3):543–551

    Article  CAS  Google Scholar 

  • Almagro L, Fernández FP, Pedreño MA (2015) Indole Alkaloids from Catharanthus roseus: bioproduction and their effect on human health. Molecules 20:2973–3000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alper KR (2001) Ibogaine: a review. Alkaloids Chem Biol 56:1–38

    Article  CAS  PubMed  Google Scholar 

  • Alper KR, Lotsof HS, Kaplan CD (2008) The ibogaine medical subculture. J Ethnopharmacol 115:9–24

    Article  CAS  PubMed  Google Scholar 

  • Arvy MP, Imbault N, Naudascher F, Thiersault M, Doireau P (1994) 2,4-D and alkaloid accumulation in periwinkle cell suspensions. Biochimie 76:410–416

    Article  CAS  PubMed  Google Scholar 

  • Bari R, Jones JD (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69(4):473–488

    Article  CAS  PubMed  Google Scholar 

  • Basile DV, Punch MS, Pablo J, Brenner B, Hearn WL, Mash DC (1999) Indole alkaloids from tissue-cultured Tabernanthe iboga H. Bn. Nat Prod Lett 13(3):233–238

    Article  CAS  Google Scholar 

  • Benyammi R, Paris C, Khelifi-Slaoui M, Zaoui D, Belabbassi O, Bakiri N, Mreiem Aci M, Harfi B, Malik S, Makhzoum A, Desobry S, Khelifi L (2016) Screening and kinetic studies of catharanthine and ajmalicine accumulation and their correlation with growth biomass in Catharanthus roseus hairy roots. Pharm Biol 54(10):2033–2043

    Article  CAS  PubMed  Google Scholar 

  • Brako-Danquah JO (2012) Voacanga africana farming system in the Assin South district: socio-economic and soil nutrient implications. Master’s thesis. Kwame Nkrumah University of Science and Technology

  • Brown TK, Alper K (2008) Treatment of opioid use disorder with ibogaine: detoxification and drug use outcomes. Am J Drug Alcohol Abuse 44(1):24–36

    Article  Google Scholar 

  • Dagnino D, Schripsema J, Peltenburg A, Verpoorte R (1991) Capillary gas chromatographic analysis of indole alkaloids: investigation of the indole alkaloids present in Tabernaemontana divaricata cell suspension culture. J Nat Prod 54(6):1558–1563

    Article  CAS  Google Scholar 

  • Dagnino D, Schripsema J, Verpoorte R (1993a) Alkaloid metabolism in Tabernaemontana divaricata cell suspension cultures. Phytochemistry 32(2):325–329

    Article  CAS  Google Scholar 

  • Dagnino D, Schripsema J, Verpoorte R (1993b) Comparison of terpenoid indole alkaloid production and degradation in two cell lines of Tabernaemontana divaricata. Plant Cell Rep 13:95–98

    Article  CAS  PubMed  Google Scholar 

  • Dagnino D, Schripsema J, Verpoorte R (1994) Terpenoid indole alkaloid biotransformation capacity of suspension cultures of Tabernaemontana divaricata. Phytochemistry 35(3):671–676

    Article  CAS  Google Scholar 

  • Dagnino D, Schripsema J, Verpoorte R (1995) Terpenoid indole alkaloid biosynthesis and enzyme activities in two cell lines of Tabernaemontana divaricata. Phytochemistry 39(2):341–349

    Article  CAS  Google Scholar 

  • Danieli B, Palmisano G (1986) Alkaloids from Tabernaemontana. In: Brossi A (ed) The alkaloids, vol 27. Academic Press Inc, Orlando, pp 1–124

    Google Scholar 

  • De Luca V, Salim V, Thamm A, Masada SA, Yu F (2014) Making iridoids/secoiridoids and monoterpenoid indole alkaloids: progress on pathway elucidation. Curr Opin Plant Biol 19:35–42

    Article  CAS  PubMed  Google Scholar 

  • Dickinson JD (2016) Iboga root: dynamics of Iboga’s African origins and modern medical use. HerbalGram 109:48–57

    Google Scholar 

  • Farrow SC, Kamileen M, Meades J, Ameyaw B, Xiao Y, O’Connor S (2018) Cytochrome P450 and O-methyltransferase catalyse the final steps in the biosynthesis of the anti-addictive alkaloid ibogaine from Tabernanthe iboga. J Biol Chem 293:13821–13833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  CAS  PubMed  Google Scholar 

  • Geerlings A, Redondo FJ, Contin A, Memelink J, van der Heijden R, Verpoorte R (2001) Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Appl Microbiol Biotechnol 56:420–424

    Article  CAS  PubMed  Google Scholar 

  • Glick SD, Kuehne ME, Raucci J, Wilson TE, Larson D, Keller RW Jr, Carlson JN (1994) Effects of iboga alkaloids on morphine and cocaine self-administration in rats: relationship to tremorigenic effects and to effects on dopamine release in nucleus accumbens and striatum. Brain Res 657:14–22

    Article  CAS  PubMed  Google Scholar 

  • Guan Y, Li SG, Fan XF, Su ZH (2016) Application of somatic embryogenesis in woody plants. Front Plant Sci 7:938

    PubMed  PubMed Central  Google Scholar 

  • Guirimand G, Guihur A, Ginis O, Poutrain P, Héricourt F, Oudin A, Lanoue A, St-Pierre B, Burlat V, Courdavault V (2011) The subcellular organization of strictosidine biosynthesis in Catharanthus roseus epidermis highlights several trans-tonoplast translocations of intermediate metabolites. FEBS J 278:749–763

    Article  CAS  PubMed  Google Scholar 

  • Guo XR, Yang L, Yu JH, Tang ZH, Zu YG (2007) Alkaloid variations in Catharanthus roseus seedlings treated by different temperatures in short term and long term. J For Res 18(4):313–315

    Article  CAS  Google Scholar 

  • Guo XR, Zu YG, Tang ZH (2012) Physiological responses of Catharanthus roseus to different nitrogen forms. Acta Physiol Plant 34(2):589–598

    Article  CAS  Google Scholar 

  • Hallard D, van der Heijden R, Contin A, Tomás Jiménez EM, Snoeijer W, Verpoorte R, Jensen SR, Lopes Cardoso I, Pasquali G, Memelink J, Hoge JHC (1998) An assay for secologanin in plant tissue culture based on enzymatic conversion into strictosidine. Phytochem Anal 9:162–167

    Article  CAS  Google Scholar 

  • He DY, Ron D (2006) Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB J 20(13):2420–2422

    Article  CAS  PubMed  Google Scholar 

  • Höft M, Verpoorte R, Beck E (1996) Growth and alkaloid contents in leaves of Tabernaemontana pachysiphon Stapf (Apocynaceae) as influenced by light intensity, water and nutrient supply. Oecologia 107:160–169

    Article  PubMed  Google Scholar 

  • Höft M, Verpoorte R, Beck E (1998) Growth and alkaloid patterns of roots of Tabernaemontana pachysiphon and Rauvolfia mombasiana as influenced by environmental factors. Bot Acta 111:222–230

    Article  Google Scholar 

  • Hussain A, Qarshi IA, Nazir H, Ullah I (2012) Plant tissue culture: current status and opportunities. In: Leva A, Rinaldi LMR (eds) Recent advances in plant in vitro culture. InTech, Rijeka

    Google Scholar 

  • Iwase A, Aoyagi H, Ohme-Takagi M, Tanaka H (2005) Development of a novel system for producing ajmalicine and serpentine using direct culture of leaves in Catharanthus roseus intact plant. J Biosci Bioeng 99(3):208–215

    Article  CAS  PubMed  Google Scholar 

  • Jana GK, Sinha S (2012a) Reductive Heck coupling: an efficient approach toward the iboga alkaloids. Synthesis of ibogamine, epiibogamine and iboga analogs. Tetrahedron Lett 53:1671–1674

    Article  CAS  Google Scholar 

  • Jana GK, Sinha S (2012b) Total synthesis of ibogaine, epiibogaine and their analogues. Tetrahedron 68:7155–7165

    Article  CAS  Google Scholar 

  • Jiang GZ, Yao MD, Wang Y, Zhou L, Song TQ, Liu H, Xiao WH, Yuan YJ (2017) Manipulation of GES and ERG20 for geraniol overproduction in Saccharomyces cerevisiae. Metab Eng 41:57–66

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Kwak SS, Kim SW, Lee H, Choi CY, Liu JR (1992) Improvement of the catharanthine productivity in hairy root cultures of Catharanthus roseus by using monosaccharides as a carbon source. Biotechnol Lett 14(8):695–700

    Article  CAS  Google Scholar 

  • Kodja H, Robene-Soustrade I, Figier J (1997) Synergistic effect of DFMO and 2,4-D on regeneration of Tabernaemontana persicariaefolia Jacq in vitro. Acta Physiol Plant 19(3):359–366

    Article  CAS  Google Scholar 

  • Koul M, Lakra NS, Chandra R, Chandra S (2013) Catharanthus roseus and prospects of its endophytes: a new avenue for production of bioactive metabolites. Int J Pharm Sci Res 4(7):2705–2716

    Google Scholar 

  • Krengel F (2015) Producción de alcaloides indólicos monoterpenoides en cultivos de callo y células en suspensión de Tabernaemontana alba Mill. (Apocynaceae). Master’s thesis. Universidad Nacional Autónoma de México

  • Krengel F, Herrera Santoyo J, Olivera Flores T, Chávez Ávila VM, Pérez Flores FJ, Reyes Chilpa R (2016) Quantification of anti-addictive alkaloids ibogaine and voacangine in in vivo- and in vitro-grown plants of two Mexican Tabernaemontana species. Chem Biodivers 13:1730–1737

    Article  CAS  PubMed  Google Scholar 

  • Krengel F, Chevalier Q, Dickinson J, Herrera Santoyo J, Reyes Chilpa R (2019) Metabolite profiling of antiaddictive alkaloids from four Mexican Tabernaemontana species and the entheogenic African shrub Tabernanthe iboga (Apocynaceae). Chem Biodivers 1:2. https://doi.org/10.1002/cbdv.201800506

    Article  CAS  Google Scholar 

  • Kumar A, Patil D, Rajamohanan PR, Ahmad A (2013) Isolation, purification and characterization of vinblastine and vincristine from endophytic fungus Fusarium oxysporum isolated from Catharanthus roseus. PLoS ONE 8(9):e71805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Kumar SR, Dwivedi V, Rai A, Shukla AK, Shanker K, Nagegowda DA (2015) Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves. Plant Sci 239:56–66

    Article  CAS  PubMed  Google Scholar 

  • Kumar SR, Shilpashree HB, Nagegowda DA (2018) Terpene moiety enhancement by overexpression of Geranyl(geranyl) diphosphate synthase and geraniol synthase elevates monomeric and dimeric monoterpene indole alkaloids in transgenic Catharanthus roseus. Front Plant Sci 9:942

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari R, Rathi B, Rani A, Bhatnagar S (2013) Rauvolfia serpentina L. Benth. Ex Kurz.: phytochemical, pharmacological and therapeutic aspects. Int J Pharm Sci Rev Res 23(2):348–355

    Google Scholar 

  • Lin JL, Ekas H, Markham K, Alper HS (2018) An enzyme-coupled assay enables rapid protein engineering for geraniol production in yeast. Biochem Eng J 139:95–100

    Article  CAS  Google Scholar 

  • Lucumi E, Luczkiewicz M, Vera A, Hallard D, van der Heijden R, Verpoorte R (2001) Alkaloid formation in cell suspension cultures of Tabernaemontana divaricata after feeding of tryptamine and loganin. Biotechnol Lett 23:1691–1696

    Article  CAS  Google Scholar 

  • Lucumi E, Vera A, Hallard D, van der Heijden R, Verpoorte R (2002) Alkaloid formation in cell suspension cultures of Tabernaemontana elegans after feeding of tryptamine and loganin or secologanin. Plant Cell Tiss Org 68:293–299

    Article  CAS  Google Scholar 

  • Mall M, Verma RK, Gupta MM, Shasany AK, Khanuja SPS, Shukla AK (2019) Influence of seasonal and ontogenic parameters on the pattern of key terpenoid indole alkaloids biosynthesized in the leaves of Catharanthus roseus. S Afr J Bot 123:98–104

    Article  CAS  Google Scholar 

  • Mehrotra S, Goel MK, Rahman LU, Kukreja AK (2013a) Molecular and chemical characterization of plants regenerated from Ri-mediated hairy root cultures of Rauwolfia serpentina. Plant Cell, Tissue Organ Cult 114(1):31–38

    Article  CAS  Google Scholar 

  • Mehrotra S, Srivastava V, Rahman LU, Kukreja AK (2013b) Overexpression of a Catharanthus tryptophan decarboxylase (tdc) gene leads to enhanced terpenoid indole alkaloid (TIA) production in transgenic hairy root lines of Rauwolfia serpentina. Plant Cell, Tissue Organ Cult 115(3):377–384

    Article  CAS  Google Scholar 

  • Mérillon JM, Doireau P, Guillot A, Chénieux JC, Rideau M (1986) Indole alkaloid accumulation and tryptophan decarboxylase activity in Catharanthus roseus cells cultured in three different media. Plant Cell Rep 5:23–26

    Article  PubMed  Google Scholar 

  • Miettinen K, Dong L, Navrot N, Schneider T, Burlat V, Pollier J, Woittiez L, van der Krol S, Lugan R, Ilc T, Verpoorte R, Oksman-Caldentey KM, Martinoia E, Bouwmeester H, Goossens A, Memelink J, Werck-Reichhart D (2014) The seco-iridoid pathway from Catharanthus roseus. Nat Commun 5:3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molchan O, Romashko S, Yurin V (2012) L-tryptophan decarboxylase activity and tryptamine accumulation in callus cultures of Vinca minor L. Plant Cell, Tissue Organ Cult 108(3):535–539

    Article  CAS  Google Scholar 

  • Moreno PRH, van der Heijden R, Verpoorte R (1993) Effect of terpenoid precursor feeding and elicitation on formation of indole alkaloids in cell suspension cultures of Catharanthus roseus. Plant Cell Rep 12:702–705

    Article  CAS  PubMed  Google Scholar 

  • Morris P (1986) Regulation of product synthesis in cell cultures of Catharanthus roseus. Effect of culture temperature. Plant Cell Rep 5:427–429

    Article  CAS  PubMed  Google Scholar 

  • Morris P, Rudge K, Cresswell R, Fowler MW (1989) Regulation of product synthesis in cell cultures of Catharanthus roseus. V. Long-term maintenance of cells on a production medium. Plant Cell, Tissue Organ Cult 17:79–90

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nam KH, Chung HJ, Jeon EJ, Park MK, Yim YH, Liu JR, Park JH (2007) In vitro biosynthesis of strictosidine using Lonicera japonica leaf extracts and recombinant yeast. J Plant Biol 50(3):315–320

    Article  CAS  Google Scholar 

  • Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharmacogn Rev 1(1):69–79

    CAS  Google Scholar 

  • Oliveira AJB, Carvalho VM, Ferreira A, Sato FY, Machado MFP (2003) In vitro multiplication of Tabernaemontana fuchsiaefolia L. (Apocynaceae). Rev Arvore 27(4):421–425

    Article  Google Scholar 

  • Papon N, Bremer J, Vansiri A, Andreu F, Rideau M, Crèche J (2005) Cytokinin and ethylene control indole alkaloid production at the level of the MEP/terpenoid pathway in Catharanthus roseus suspension cells. Planta Med 71:572–574

    Article  CAS  PubMed  Google Scholar 

  • Pawelka KH, Stöckigt J (1983) Indole alkaloids from cell suspension cultures of Tabernaemontana divaricata and Tabernanthe iboga. Plant Cell Rep 2:105–107

    Article  CAS  PubMed  Google Scholar 

  • Payne RME, Xu D, Foureau E, Soares-Teto-Carqueijeiro MI, Oudin A, de Bernonville TD, Novak V, Burow M, Olsen CE, Jones DM, Tatsis EC, Pendle A, Halkier BA, Geu-Flores F (2017) An NPF transporter exports a central monoterpene indole alkaloid intermediate from the vacuole. Nat Plants 3:16208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira PS, Ticli FK, de Castro França S, de Souza Breves CM, Lourenço MV (2007) Enhanced triterpene production in Tabernaemontana catharinensis cell cuspension cultures in response to biotic elicitors. Quim Nova 30(8):1849–1852

    Article  CAS  Google Scholar 

  • Qu Y, Safonova O, De Luca V (2019) Completion of the canonical pathway for assembly of anticancer drugs vincristine/vinblastine in Catharanthus roseus. Plant J 97:257–266

    Article  CAS  PubMed  Google Scholar 

  • Ramawat KG (2007) Production of alkaloids. In: Ramawat KG, Mérillon JM (eds) Biotechnology. Secondary metabolites. Plants and microbes, 2nd edn. CRC Press, Boca Raton, pp 179–208

    Chapter  Google Scholar 

  • Ramawat KG, Mathur M (2007) Factors affecting the production of secondary metabolites. In: Ramawat KG, Mérillon JM (eds) Biotechnology. Secondary metabolites. Plants and microbes, 2nd edn. CRC Press, Boca Raton, pp 59–102

    Chapter  Google Scholar 

  • Roytrakul S, Verpoorte R (2007) Role of vacuolar transporter proteins in plant secondary metabolism: Catharanthus roseus cell culture. Phytochem Rev 6:383–396

    Article  CAS  Google Scholar 

  • Saiman MZ, Miettinen K, Mustafa NR, Choi YH, Verpoorte R, Schulte AE (2018) Metabolic alteration of Catharanthus roseus cell suspension cultures overexpressing geraniol synthase in the plastids or cytosol. Plant Cell, Tissue Organ Cult 134(1):41–53

    Article  CAS  Google Scholar 

  • Saiman MZ, Mustafa NR, Pomahočová B, Verberne M, Verpoorte R, Choi YH, Schulte AE (2014) Analysis of metabolites in the terpenoid pathway of Catharanthus roseus cell suspensions. Plant Cell, Tissue Organ Cult 117(2):225–239

    Article  CAS  Google Scholar 

  • Saiman MZ, Mustafa NR, Choi YH, Verpoorte R, Schulte AE (2015) Metabolic alterations and distribution of five-carbon precursors in jasmonic acid-elicited Catharanthus roseus cell suspension cultures. Plant Cell, Tissue Organ Cult 122(2):351–362

    Article  CAS  Google Scholar 

  • Salim V, de Luca V (2013) Towards complete elucidation of monoterpene indole alkaloid biosynthesis pathway: Catharanthus roseus as a pioneer system. Adv Bot Res 68:1–37

    Article  CAS  Google Scholar 

  • Schripsema J, Verpoorte R (1992) Search for factors related to the indole alkaloid production in cell suspension cultures of Tabernaemontana divaricata. Planta Med 58(3):245–249

    Article  CAS  PubMed  Google Scholar 

  • Schripsema J, Peltenburg-Looman A, Erkelens C, Verpoorte R (1991) Nitrogen metabolism in cultures of Tabernaemontana divaricata. Phytochemistry 30(12):3951–3954

    Article  CAS  Google Scholar 

  • Schripsema J, Dagnino D, dos Santos RI, Verpoorte R (1994) Breakdown of indole alkaloids in suspension cultures of Tabernaemontana divaricata and Catharanthus roseus. Plant Cell, Tissue Organ Cult 38:299–305

    Article  CAS  Google Scholar 

  • Scossa F, Benina M, Alseekh S, Zhang Y, Fernie AR (2018) The integration of metabolomics and next-generation sequencing data to elucidate the pathways of natural product metabolism in medicinal plants. Planta Med 84:855–873

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Verma P, Mathur A, Mathur AK (2018) Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus. Protoplasma 255(5):1281–1294

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Mathur AK, Ganpathy J, Joshi B, Patel P (2019) Effect of abiotic elicitation and pathway precursors feeding over terpenoid indole alkaloids production in multiple shoot and callus cultures of Catharanthus roseus. Biologia 74:543–553

    Article  CAS  Google Scholar 

  • Sierra MI, van der Heijden R, Schripsema J, Verpoorte R (1991) Alkaloid production in relation to differentiation in cell and tissue cultures of Tabernaemontana pandacaqui. Planta Med 57(6):543–547

    Article  CAS  PubMed  Google Scholar 

  • Sierra MI, van der Heijden R, van der Leer T, Verpoorte R (1992) Stability of alkaloid production in cell suspension cultures of Tabernaemontana divaricata during long-term subculture. Plant Cell, Tissue Organ Cult 28:59–68

    Article  CAS  Google Scholar 

  • Smith RH (2013) Media components and preparation. In: Smith RH (ed) Plant tissue culture. Techniques and experiments, 3rd edn. Academic Press, Cambridge, pp 31–43

    Chapter  Google Scholar 

  • Stevens LH, Blom TJM, Verpoorte R (1993) Subcellular localization of tryptophan decarboxylase, strictosidine synthase and strictosidine glucosidase in suspension cultured cells of Catharanthus roseus and Tabernaemontana divaricata. Plant Cell Rep 12:573–576

    Article  CAS  PubMed  Google Scholar 

  • Stöckigt J, Pawelka KH, Rother A, Deus B (1982) Indole alkaloids from cell suspension cultures of Stemmadenia tomentosa and Voacanga africana. Z Naturforsch C 37:857–860

    Article  Google Scholar 

  • Stöckigt J, Pawelka KH, Tanahashi T (1983) Voafrine A and voafrine B, new dimeric indole alkaloids from cell suspension cultures of Voacanga africana stapf. Helv Chim Acta 66:2525–2533

    Article  Google Scholar 

  • Thakore D, Srivastava AK, Sinha AK (2017) Mass production of Ajmalicine by bioreactor cultivation of hairy roots of Catharanthus roseus. Biochem Eng J 119:84–91

    Article  CAS  Google Scholar 

  • Toivonen L, Laakso S, Rosenqvist H (1992a) The effect of temperature on growth, indole alkaloid accumulation and lipid composition of Catharanthus roseus cell suspension cultures. Plant Cell Rep 11(8):390–394

    CAS  PubMed  Google Scholar 

  • Toivonen L, Laakso S, Rosenqvist H (1992b) The effect of temperature on hairy root cultures of Catharanthus roseus: growth, indole alkaloid accumulation and membrane lipid composition. Plant Cell Rep 11(8):395–399

    CAS  PubMed  Google Scholar 

  • Tonk D, Mujib A, Maqsood M, Ali M, Zafar N (2016) Aspergillus flavus fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus. Plant Cell, Tissue Organ Cult 126(2):291–303

    Article  CAS  Google Scholar 

  • Van Beek TA, Verpoorte R, Svendsen AB, Leeuwenberg AJ, Bisset NG (1984) Tabernaemontana L. (Apocynaceae): a review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J Ethnopharmacol 10(1):1–156

    Article  PubMed  Google Scholar 

  • Van der Heijden R, Brouwer RL, Verpoorte R, Wijnsma R, van Beek TA, Harkes PAA, Baerheim Svendsen A (1986) Indole alkaloids from a callus culture of Tabernaemontana elegans. Phytochemistry 25(4):843–846

    Article  Google Scholar 

  • Van der Heijden R, Hermans-Lokkerbol A, de Kool LP, Lamping PJ, Harkes PAA, Verpoorte R (1988a) Accumulation of indole alkaloids in a suspension culture of Tabernaemontana divaricata. Planta Med 54(5):393–397

    Article  PubMed  Google Scholar 

  • Van der Heijden R, Verheij ER, Schripsema J, Baerheim Svendsen A, Verpoorte R, Harkes PAA (1988b) Induction of triterpene biosynthesis by elicitors in suspension cultures of Tabernaemontana species. Plant Cell Rep 7:51–54

    Article  PubMed  Google Scholar 

  • Van der Heijden R, Louwe CL, Verheij ER, Harkes PAA, Verpoorte R (1989a) Characterization of a suspension culture of Tabernaemontana elegans on growth, nutrient uptake, and accumulation of indole alkaloids. Planta Med 55(2):158–162

    Article  PubMed  Google Scholar 

  • Van der Heijden R, Threlfall DR, Verpoorte R, Whitehead IM (1989b) Regulation and enzymology of pentacyclic triterpenoid phytoalexin biosynthesis in cell suspension cultures of Tabernaemontana divaricata. Phytochemistry 28(11):2981–2988

    Article  Google Scholar 

  • Van der Heijden R, Verpoorte R, ten Hoopen HJG (1989c) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey. Plant Cell Tissue Organ 18:231–280

    Article  Google Scholar 

  • Verma AK, Singh RR, Singh S (2012) Improved alkaloid content in callus culture of Catharanthus roseus. Bot Serb 36(2):123–130

    Google Scholar 

  • Whitmer S, van der Heijden R, Verpoorte R (2002) Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. J Biotechnol 96:193–203

    Article  CAS  PubMed  Google Scholar 

  • Yahia A, Kevers C, Gaspar T, Chénieux JC, Rideau M, Crèche J (1998) Cytokinins and ethylene stimulate indole alkaloid accumulation in cell suspension cultures of Catharanthus roseus by two distinct mechanisms. Plant Sci 133:9–15

    Article  CAS  Google Scholar 

  • Yu F, de Luca V (2013) ATP-binding cassette transporter controls leaf surface secretion of anticancer drug components in Catharanthus roseus. Proc Natl Acad Sci USA 110(39):15830–15835

    Article  PubMed  Google Scholar 

  • Zhao J, Hu Q, Guo YQ, Zhu WH (2001a) Effects of stress factors, bioregulators, and synthetic precursors on indole alkaloid production in compact callus clusters cultures of Catharanthus roseus. Appl Microbiol Biotechnol 55:693–698

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Zhu WH, Hu Q, He XW (2001b) Enhanced indole alkaloid production in suspension compact callus clusters of Catharanthus roseus: impacts of plant growth regulators and sucrose. Plant Growth Regul 33:33–41

    Article  Google Scholar 

  • Zhao L, Sander GW, Shanks JV (2013) Perspectives of the metabolic engineering of terpenoid indole alkaloids in Catharanthus roseus hairy roots. In: Doran PM (ed) Biotechnology of hairy root systems. Springer, Berlin, pp 23–54

    Chapter  Google Scholar 

  • Zhu J, Wang M, Wen W, Yu R (2015) Biosynthesis and regulation of terpenoid indole alkaloids in Catharanthus roseus. Pharmacogn Rev 9(17):24–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The figure included in this article was created using ChemBioDraw Ultra 13.0 (vector). This work was supported by the Posgrado en Ciencias Biológicas, UNAM, in the context of the first author’s doctoral studies. Felix Krengel received a scholarship from the Consejo Nacional de Ciencia y Tecnología (CONACYT) (Beca Nacional para Estudios de Posgrado, No. 429281; CVU/Becario No. 545330/292756).

Author information

Authors and Affiliations

Authors

Contributions

FK, TOF, and JHS conducted the literature survey. FK wrote the draft. Based on the comments of all authors, FK and RRC wrote the final version of the manuscript.

Corresponding author

Correspondence to Ricardo Reyes-Chilpa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Danny Geelen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krengel, F., Olivera-Flores, T.d.J., Herrera-Santoyo, J. et al. Strategies for the in vitro production of antiaddictive ibogan type alkaloids from Apocynaceae species. Plant Cell Tiss Organ Cult 138, 215–227 (2019). https://doi.org/10.1007/s11240-019-01629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01629-z

Keywords

Navigation