Skip to main content
Log in

Overexpression of a Catharanthus tryptophan decarboxylase (tdc) gene leads to enhanced terpenoid indole alkaloid (TIA) production in transgenic hairy root lines of Rauwolfia serpentina

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

To enhance the production of terpenoid indole alkaloids in Rauwolfia serpentina, Catharanthus tryptophan decarboxylase (Crtdc) gene was over-expressed in transgenic hairy root cultures using Agrobacterium rhizogenes-mediated transformation. Among six transgenic hairy root lines, line RT4 accumulated the highest alkaloid content, with 0.1202 % dry weight (DW) reserpine and 0.0064 % DW ajmalicine, after 10 weeks of culture. Whereas, wild-type roots accumulated 0.0596 ± 0.003 % DW reserpine and 0.0011 ± 0.001 % DW ajmalicine. Transgenic hairy root line RT7 produced the lowest alkaloid content (reserpine: 0.0896 ± 0.002 % DW; ajmalicine: 0.002 ± 0.0 % DW). On the basis of alkaloid content the six hairy root lines were grouped as RT4/RT2 > RT3/RT5 > RT7/RT8. Analysis of gene expression profile indicated that Crtdc was expressed at a higher level in transgenic lines, which could be correlated with enhanced metabolite accumulation in roots. This study confirms that over-expression of Crtdc is a superlative method to improve the biosynthetic potential of Rauwolfia hairy root cultures. Enhanced reserpine and ajmalicine production can serve as an alternative choice to provide resources for relative pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarrouf J, Castro-Quezada P, Mallard S, Caromel B, Lizzi Y, Lefebure V (2011) Agrobacterium rhizogenes-dependent production of transformed root from foliar explants of pepper (Capsicum annum): a new and efficient tool for functional analysis of genes. Plant Cell Rep 3:391–401

    Google Scholar 

  • Bhattacharjee SK (1998) Handbook of medicinal plants. Pointer Publishers, India

    Google Scholar 

  • Canel C, Lopes-Cardoso MI, Whitmer S, van der Fits L, Pasquali G, van der Heijden R, Hoge JH, Verpoorte R (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205:414–419

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay T, Roy S, Mitra A, Maiti MK (2011) Development of a transgenic hairy root system in jute (Corchorus capsularis L.) with gusA reporter gene through Agrobacterium rhizogenes mediated co-transformation. Plant Cell Rep 30:485–493

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, Marineau C, Brission N (1989) Molecular cloning and analysis of cDNA encoding a plant tryptophan decarboxylase: comparison with animal dopa decarboxylases. Proc Natl Acad Sci USA 86:2582–2586

    Article  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50(1):151–158

    Article  PubMed  CAS  Google Scholar 

  • Geerlings A, Hallard D, Caballero AM, Cardoso IL, van der Heijden R, Verpoorte R (1999) Alkaloid production by a Cinchona officinalis ‘Ledergriana’ hairy root culture containing constitutive expression constructs of tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus. Plant Cell Rep 19:191–196

    Article  CAS  Google Scholar 

  • Goddijn OJ, Lohman FP, de Kam RJ, Schilperoort RA, Hoge JHC (1994) Nucleotide sequence of the tryptophan decarboxylase gene of Catharanthus roseus and expression of tdc-gusA gene fusions in Nicotiana tabacum. Mol Gen Genet 242:217–225

    Article  PubMed  CAS  Google Scholar 

  • Goddijn OJ, Pennings EJ, van der Helm P, Schilperoort RA, Verpoorte R, Hoge JH (1995) Over expression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased Tryptamine levels but not in increased terpenoid indole alkaloid production. Transgenic Res 4:315–323

    Article  PubMed  CAS  Google Scholar 

  • Goel MK, Mehrotra S, Kukreja AK, Shanker K, Khanuja SPS (2009) In vitro propagation of Rauwolfia serpentina using liquid medium, assessment of genetic fidelity of micropropagated plants, and simultaneous quantitation of reserpine, ajmaline, and ajmalicine. In: Jain SM, Saxena PK (eds) Methods in molecular biology, protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, vol 547. Humana Press, Clifton, pp 17–33

    Google Scholar 

  • Goel MK, Goel S, Banerjee S, Shanker K, Kukreja AK (2010) Agrobacterium rhizogenes mediated transformed roots of Rauwolfia serpentina for reserpine biosynthesis. Med Aromat Plant Sci Biotech 8–14

  • Hong SB, Peebles CA, Shanks JV, San KY, Gibson SI (2006) Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. J Biotechnol 122(1):28–38

    Article  PubMed  CAS  Google Scholar 

  • Hooykass PJJ, Klapwijk PM, Nuti PM, Shilperoot RA, Rorsch A (1977) Transfer of Agrobacterium tumifacience Ti plasmid to a virulent Agrobacterium and Rhizobium explant. J Gen Microbiol 98:477–487

    Article  Google Scholar 

  • Hughes EH, Hong SB, Gibson SI, Shanks JV, San KY (2004) Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamine and serpentine. Metab Eng 6(4):268–276

    Article  PubMed  CAS  Google Scholar 

  • Khanuja SPS, Shasany AK, Darokar MP, Kumar S (1999) Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Biol Rep 17:74–80

    Article  Google Scholar 

  • Kumar S, Dutta A, Sinha AK, Sen J (2007) Cloning, characterization and localization of a novel basic peroxidase gene from Catharanthus roseus. FEBS J 274:1290–1303

    Article  PubMed  CAS  Google Scholar 

  • Larkin PJ, Miller JAC, Allen RS, Chitty JA, Gerlach WL, Frick S, Kutchan TM, Fist AJ (2007) Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum. Plant Biotechnol J 5:26–37

    Article  PubMed  CAS  Google Scholar 

  • Liu DH, Jin HB, Chen YH, Cui LJ, Ren WW, Gong YF, Tang KX (2007) Terpenoid indole alkaloids biosynthesis and metabolic engineering in Catharanthus roseus. J Integr Plant Biol 49:961–974

    Article  CAS  Google Scholar 

  • Liu W, Chen R, Chen M, Zhang H, Peng M, Yang C, Ming X, Lan X, Liao Z (2012) Tryptophan decarboxylase plays an important role in ajmalicine biosynthesis in Rauvolfia verticillata. Planta 236(1):239–250

    Article  PubMed  CAS  Google Scholar 

  • Mehrotra S, Rahman LU, Kukreja AK (2010) An extensive case study of hairy-root cultures for enhanced secondary-metabolite production through metabolic-pathway engineering. Biotechnol Appl Biochem 56:161–172

    Article  PubMed  CAS  Google Scholar 

  • Mehrotra S, Goel MK, Rahman LU, Kukreja AK (2013) Molecular and chemical characterization of plants regenerated from Ri-mediated hairy root cultures of Rauwolfia serpentina. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-013-0302-6

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Ouwerkerk PBF, Memelink J (1999) Elicitor responsive promoter regions in the tryptophan decarboxylase gene from Catharanthus roseus. Plant Mol Biol 39:129–136

    Article  PubMed  CAS  Google Scholar 

  • Pan Q, Wang Q, Yuan F, Xing S, Zhao J et al (2012) Over-expression of ORCA3 and G10H in Catharanthus roseus plants regulated alkaloid biosynthesis and metabolism revealed by NMR-metabolomics. PLoS ONE 7(8):e43038. doi:10.1371/journal.pone.0043038

    Article  PubMed  CAS  Google Scholar 

  • Peebles CAM, Hughes EH, Shanks JV, San KY (2009) Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots over time. Metab Eng 11:76–86

    Article  PubMed  CAS  Google Scholar 

  • Rischer H, Oresic M, Seppa TL, Katajamaa M, Lammertyn F, Ardiles-Diaz W, Van Montagu MCE, Inze D, Oksman-Caldentey KM, Goossens A (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proc Natl Acad Sci USA 103:5614–5619

    Article  PubMed  CAS  Google Scholar 

  • Sharafi A, Sohi HH, Mousavi A, Azadi P, Khalifani BH, Razavi K (2013) Metabolic engineering of morphinan alkaloids by over-expression of codeinone reductase in transgenic hairy roots of Papaver bracteatum, the Iranian poppy. Biotechnol Lett 35:445–453

    Article  PubMed  CAS  Google Scholar 

  • Trivedi KC (1995) Sarpagandha. In: Chadha KL, Gupta R (eds) Advances in horticulture medicinal and aromatic plants vol 11. Malhotra Publshing House, New Delhi, pp 453–466

    Google Scholar 

  • van der Fits L, Memelink J (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289:295–297

    Article  PubMed  Google Scholar 

  • Wang GL, Fang HJ (1998) Plant genetic engineering, 2nd edn. Science, Beijing

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Director, CIMAP (CSIR) for providing the facility to carry out this work. Financial support rendered by Department of Science and Technology (DST), New Delhi to SM and Council of Scientific and Industrial Research (CSIR), New Delhi to VS is gratefully acknowledged. Thanks are also due to Mr. Praveen Prakash SRF, Plant Biotechnology Division CIMAP, Lucknow for his generous help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakti Mehrotra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11240_2013_369_MOESM1_ESM.doc

Major steps in terpenoid indole alkaloid biosynthetic pathway. Shaded area in box represents the steps common in Catharanthus and Rauwolfia. AS: nthranilate synthase; TDC: tryptothan decarboxylase; STR: strictosidine synthase etc. (Dashed arrows indicate more than one step) (DOC 243 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrotra, S., Srivastava, V., Rahman, L.U. et al. Overexpression of a Catharanthus tryptophan decarboxylase (tdc) gene leads to enhanced terpenoid indole alkaloid (TIA) production in transgenic hairy root lines of Rauwolfia serpentina . Plant Cell Tiss Organ Cult 115, 377–384 (2013). https://doi.org/10.1007/s11240-013-0369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0369-0

Keywords

Navigation