Skip to main content

Advertisement

Log in

Advances in breeding and biotechnology of legume crops

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Legume crops are relevant globally to the feeding and the nutrition of humans and animals because of their relatively high seed content of protein and essential amino acids. Additionally, they are related to sustainable agriculture, considering their ability to associate with atmospheric nitrogen fixing bacteria (Rhizobia). Despite this, several technical constraints of legumes crops have maintained their worldwide production far behind from cereals. This review article focuses in current information about recent advances in breeding and biotechnology of the major leguminous crops. Conventional breeding has mainly focused in improving multiple vegetative and reproductive traits that have associated to distinct heritability values, which reflects how amenable each character is for genetic improvement. Legumes have strongly entered into the genomics era through the complete genome sequencing of several species in the last decade. Moreover, a wealth of tools and techniques of Fabaceae genomics are now available and discussed throughout this article. In addition, there is an increasing amount of quantitative trait loci, candidate genes, and genes associated to abiotic and biotic resistance and to agronomic traits that have been reported, which will potentially allow more rapid progress of legume genetic improvement. Two successful examples of genetically modified legume crops are examined in this paper: glyphosate-resistant transgenic soybean and transgenic common bean resistant to Bean golden mosaic virus. Finally, legumes genomics and breeding programs, using classical breeding methods, marker-assisted selection, and biotechnological tools face a promising momentum for further application of technology and information that could boost their global production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelmajid KM, Ramos L, Hyten D, Bond J, Bendahmane A, Arelli PR, Njiti VN, Cianzio S, Kantartzi SK, Meksem K (2014) Quantitative trait loci (QTL) that underlie scn resistance in soybean [Glycine max (L.) Merr.] PI438489B by ‘Hamilton’ recombinant inbred line (RIL) population. Atlas J Plant Biol 1:29–38

    Article  Google Scholar 

  • Abid G, Muhovski Y, Mingeot D, Watillon B, Toussaint A, Mergeai G, M’hamdi M, Sassi K, Jebara M (2014) Identification and characterization of drought stress responsive genes in faba bean (Vicia faba L.) by suppression subtractive hybridization. Plant Cell Tiss Org Cult 121:367–379

    Article  CAS  Google Scholar 

  • Agbicodo EM, Fatokun CA, Bandyopadhyay R, Wydra K, Diop NN, Muchero W, Ehlers JD, Roberts PA, Close TJ, Visser RGF, van der Linden CG (2010) Identification of markers associated with bacterial blight resistance loci in cowpea [Vigna unguiculata (L.) Walp.] Euphytica 175:215–226

    Article  CAS  Google Scholar 

  • Ahmad Z, Nisar M, Mumtaz AS, Ghafoor A, Ali S (2014) SSR markers linked to seed size and seed weight in local and exotic chickpea germplasm reported from Pakistan. Pak J Bot 46:2113–2120

    Google Scholar 

  • Ajayi AT, Adekola MO, Taiwo BH, Azuh VO (2014) Character expression and differences in yield potential of ten genotypes of cowpea (Vigna unguiculata L. Walp). Int J Plant Res 4:63–71

    Google Scholar 

  • Akond M, Liu S, Boney M, Kantartzi SK, Meksem K, Bellaloui N, Lightfoot DA, Kassem MA (2014) Identification of Quantitative trait loci (QTL) underlying protein, oil, and five major fatty acids’ contents in soybean. Am J Plant Sci 5:158–167

    Article  CAS  Google Scholar 

  • Akperteya A, Belaffif M, Graef GL, Mian MAR, Shannon JG, Cregan PB, Hudson ME, Diers BW, Nelson RL (2014) Effects of selective genetic introgression from wild soybean to soybean. Crop Sci 54:2683–2695

    Article  Google Scholar 

  • Alghamdi SS (2007) Genetic behavior of some selected Faba bean genotypes. Afr Crop Sci Conf Proc 8:709–714

    Google Scholar 

  • Ali A, Johnson DL (2000) Plant heritability estimates for winter hardiness in lentil under natural and controlled conditions. Breeding 119:283–285

    Article  Google Scholar 

  • Amede T, Kittlitz EV, Schubert S (1999) Differential drought responses of faba bean (Vicia faba L.) inbred lines. J Agron Crop Sci 183:35–45

    Article  Google Scholar 

  • Anbazhagan K, Bhatnagar-Mathur P, Vadez V, Dumbala SR, Kishor PVK, Sharma KK (2015) DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep 34:199–210

    Article  CAS  PubMed  Google Scholar 

  • Andargie M, Pasquet RS, Gowda BS, Muluvi GM, Timko MP (2014) Molecular mapping of QTLs for domestication-related traits in cowpea (V. unguiculata (L.) Walp.) Euphytica 200:401–412

    Article  Google Scholar 

  • Anderson J, Akond M, Kassem MA, Meksem K, Kantartzi SK (2014) Quantitative trait loci underlying resistance to sudden death syndrome (SDS) in MD96-5722 by ‘Spencer’ recombinant inbred line population of soybean. 3 Biotech. doi:10.1007/s13205-014-0211-3

    PubMed Central  Google Scholar 

  • Annicchiarico P, Nazzicari N, Ananta A, Carelli M, Wei Y, Brummer EC (2016) Assessment of cultivar distinctness in alfalfa: a comparison of genotyping-by-sequencing, simple-sequence repeat marker, and morphophysiological observations. Plant Genome 9. doi:10.3835/plantgenome2015.10.0105

  • Antonio RP, Santos JB, Souza TP, Carneiro FF (2008) Genetic control of the resistance of common beans to white mold using the reaction to oxalic acid. Genet Mol Res 7:733–740

    Article  CAS  PubMed  Google Scholar 

  • Aragao FJL, Faria JC (2009) First transgenic geminivirus-resistant plant in the field. Nat Biotechnol 27:1086–1088

    Article  CAS  PubMed  Google Scholar 

  • Aragao FLJ, Nogueria OPL, Tinocoa MLP, Faria JC (2013) Molecular characterization of the first commercial transgenic common bean immune to the Bean golden mosaic virus. J Biotechnol 166:42–50

    Article  CAS  PubMed  Google Scholar 

  • Araújo SS, Beebe S, Crespi M, Delbreil B, González EM, Gruber V, Lejeune-Henaut I, Link W, Monteros MJ, Prats E, Rao I, Vadez V, Patto MCV (2015) Abiotic stress responses in legumes: strategies used to cope with environmental challenges. Crit Rev Plant Sci 34:237–280

    Article  CAS  Google Scholar 

  • Arbaoui M, Link W, Satovic Z, Torres AM (2008) Quantitative trait loci of frost tolerance and physiologically related trait in faba bean (Vicia faba L.) Euphytica 164:93–104

    Article  CAS  Google Scholar 

  • Ariani A, Mier y Teran JCB, Gepts P (2016) Genome-wide identification of SNPs and copy number variation in common bean (Phaseolus vulgaris L.) using genotyping-by-sequencing (GBS). Mol Breed. doi:10.1007/s11032-016-0512-9

    Google Scholar 

  • Arruda SCC, Barbosa HS, Azevedo RA, Arruda MAZ (2013) Comparative studies focusing on transgenic through cp4EPSPS gene and non-transgenic soybean plants: an analysis of protein species and enzymes. J Proteom. doi:10.1016/j.jprot.2013.05.039

    Google Scholar 

  • Aryamanesh N, Byrne O, Hardie DC, Khan T, Siddique KHM, Yan G (2012). Large-scale density-based screening for pea weevil resistance in advanced backcross lines derived from cultivated field pea (Pisum sativum) and Pisum fulvum. Crop Pasture Sci 63:612–618

    Article  Google Scholar 

  • Aryamanesh N, Zeng Y, Byrne O, Hardie DC, Al-Subhi AM, Khan T, Siddique KHM, Yan G (2014) Identification of genome regions controlling cotyledon, pod wall/seed coat and pod wall resistance to pea weevil through QTL mapping. Theor Appl Genet 127:489–497

    Article  Google Scholar 

  • Asamizu E, Nakamura Y, Sato S, Tabata S (2005) comparison of the transcript profiles from the root and the nodulating root of the model legume lotus japonicus by serial analysis of gene expression. Mol Plant Microbe Interact 18:487–498

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Iram A (2005) Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora-Morphol Distrib Funct Ecol Plants 200:535–546

    Article  Google Scholar 

  • Ayo-Vaughan MA, Ariyo OJ, Alake CO (2013) Combining ability and genetic components for pod and seed traits in cowpea lines. Ital J Agron 8:73–78

    Google Scholar 

  • Babu GS, Raje RS, Prabhu KV, Singh NK, Chauhan DA, Priyanka J, Ambika K, Rekha Y, Anshika T (2014) Validation of QTLs for earliness and plant type traits in pigeonpea (Cajanus cajan (L.) Millsp.) Indian J Genet Plant Breed 74:471–477

    Article  CAS  Google Scholar 

  • Bajaj D, Saxena MS, Kujur A, Das S, Badoni S, Tripathi S, Upadhyaya HD, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK (2014) Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. J Exp Bot 10:1–20

    Google Scholar 

  • Baraskar VV, Kachhadia VH, Vachhani JH, Barad HR, Patel MB, Darwankar MS (2014) Genetic variability, heritability and genetic advance in soybean [Glycine max (L.) Merrill]. Electron J Plant Breed 5:802–806

    Google Scholar 

  • Barker SJ, Si P, Hodgson L, Ferguson-Hunt M, Khentry Y, Krishnamurthy P, Averis S, Mebus K, O’Lone C, Dalugoda D, Koshkuson N, Faithfull T, Jackson J, Erskine W (2016) Regeneration selection improves transformation efficiency in narrow-leaf lupin. Plant Cell Tiss Organ Cult 126:219–228

    Article  CAS  Google Scholar 

  • Bastien M, Sonah H, Belzile F (2014) Genome wide association mapping of Sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. Plant Genome 7. doi:10.3835/plantgenome2013.10.0030

  • Becerra VV, Paredes CM, Rojo MC, Diaz LM, Blair MW (2010) Microsatellite marker characterization of Chilean common bean (Phaseolus vulgaris L.) Germplasm. Crop Sci 50:1932–1941

    Article  CAS  Google Scholar 

  • Beckie HJ, Hall LM (2014) Genetically-modified herbicide-resistant (GMHR) crops a two-edged sword? An Americas perspective on development and effect on weed management. Crop Prot 66:40–45

    Article  Google Scholar 

  • Behrens MR, Mutlu S, Chakraborty R et al (2007) Dicamba resistance: enlarging and preserving biotechnology-based weed management strategies. Science 316:1185–1188

    Article  CAS  PubMed  Google Scholar 

  • Bello MH, Moghaddam SM, Massoudi M, McClean PE, Cregan PB, Miklas PN (2014) Application of in silico bulked segregant analysis for rapid development of markers linked to Bean common mosaic virus resistance in common bean. BMC Genom. doi:10.1186/1471-2164-15-903

    Google Scholar 

  • Benbrook CM (2016) Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur 28. doi:10.1186/s12302-016-0070-0

  • Benzle KA, Finer KR, Marty DM, McHale LK, Goodner BW, Taylor CG, Finer JJ (2015) Isolation and characterization of novel Agrobacterium strains for soybean and sunflower transformation. Plant Cell Tiss Organ Cult 121:71–81

    Article  CAS  Google Scholar 

  • Bhadru D (2011) Genetic studies in pigeonpea (Cajanus cajan (L.) Mill sp.) Electron J Plant Breed 2:132–134

    Google Scholar 

  • Biçer BT, Sakar D (2004) Evaluation of some lentil genotypes at different locations in Turkey. Int J Agric Biol 6:317–320

    Google Scholar 

  • Biçer BT, Sakar D (2010) Heritability of yield and its components in lentil (Lens Culinaris Medik.) Bulg J Agric Sci 16:30–35

    Google Scholar 

  • Black M, Bewley JD, Hlamer P (2006) The encyclopedia of seeds: science, technology and uses. CAB International, Wallingford, p 828

    Google Scholar 

  • Blair MW, Rodriguez LM, Pedraza F, Morales F, Beebe S (2007) Genetic mapping of the bean golden yellow mosaic geminivirus resistance gene bgm-1 and linkage with potyvirus resistance in common bean (Phaseolus vulgaris L.) Theor Appl Genet 114:261–271

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Jha UC, Kishor PBK, Pandey S, Singh NP (2014) Genomics and molecular breeding in lesser explored pulse crops: Current trends and future opportunities. Biotechnol Adv 32:1410–1428

    Article  CAS  PubMed  Google Scholar 

  • Bohra A, Sahrawat KL, Kumar S, Joshi R, Parihar AK, Singh U, Singh D, Singh NP (2015) Genetics- and genomics-based interventions for nutritional enhancement of grain legume crops: status and outlook. J Appl Genetics. doi:10.1007/s13353-014-0268-z

    Google Scholar 

  • Boyle PDO, Kelly JD (2007) Use of marker-assisted selection to breed for resistance to common bacterial blight in common bean. J Am Soc Hortic Sci 132:381–386

    Google Scholar 

  • Brummer EC, Li X, Wei Y, Acharya A, Viands D, Hansen J, Claessens, Michaud R, Annicchiarico P, Nazzicari N (2015). GBS-based yield selection in Alfalfa: now we’re getting somewhere…aren’t we? International plant and animal genome conference, paper 16609. San Diego, CA, USA

  • Byrne OM, Hardie DC, Khan TN, Speijers J, Yan G (2008) Genetic analysis of pod and seed resistance to pea weevil in a Pisum sativum × P. fulvum interspecific cross. Aust J Agric Res 59:854–862

    Article  CAS  Google Scholar 

  • Cannon, SB, Farmer AD, Umale PE, Lokhande H, Cleary A, Weeks NT, Kalberer SR, Cannon E, Dash S, Bitragunta D, Singh J (2015) The Legume information system (Legumeinfo.org). International plant and animal Genome XXIII Conference, P0697, San Diego, CA, USA https://pag.confex.com/pag/xxiii/webprogram/Paper15992.html. Accessed 28 Feb 2015

  • Carrillo E, Satovic Z, Aubert G, Boucherot K, Rubiales D, Fondevilla S (2014) Identification of quantitative trait loci and candidate genes for specific cellular resistance responses against Didymella pinodes in pea. Plant Cell Rep 33:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Castro P, Rubio J, Madrid E, Fernández-Romero MD, Millán T, Gil J (2015) Efficiency of marker-assisted selection for Ascochyta blight in chickpea. J Agric Sci 153:56–67

    Article  CAS  Google Scholar 

  • Cerdeira AL, Duke SO (2006) The current status and environmental impacts of glyphosate-resistant crops: a review. J Environ Qual 35:1633–1658

    Article  CAS  PubMed  Google Scholar 

  • Chankaew S, Isemura T, Naito K, Ogiso-Tanaka E, Tomooka N, Somta P, Kaga A, Vaughan DDA, Srinives P (2014) QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species. Theor Appl Genet 127:691–702

    Article  CAS  PubMed  Google Scholar 

  • Chen LJ, Lee DS, Song ZP et al (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot (Lond) 93:67–73

    Article  CAS  Google Scholar 

  • Choudhary S, Sethy NK, Shokeen B, Bhatia S (2009) Development of chickpea EST-SSR markers and analysis of allelic variation across related species. Theor Appl Genet 118:591–608

    Article  CAS  PubMed  Google Scholar 

  • Cichy KA, Fernandez A, Kilian A, Kelly JD, Galeano CH, Shaw S, Brick M, Hodkinson D, Troxtell E (2013) QTL analysis of canning quality and color retention in black beans (Phaseolus vulgaris L.) Mol Breed 33:139–154

    Article  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc B: Biol Sci 363:557–572

    Article  CAS  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Concibido V, La Vallee B, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X (2003) Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet 106:575–582

    Article  CAS  PubMed  Google Scholar 

  • Confalonieri M, Faè M, Balestrazzi A, Donà M, Macovei A, Valassi A, Giraffa G, Carbonera D (2014) Enhanced osmotic stress tolerance in Medicago truncatula plants overexpressing the DNA repair gene MtTdp2a (tyrosyl-DNA phosphodiesterase 2). Plant Cell Tiss Organ Cult 116:187–203

    Article  CAS  Google Scholar 

  • Cruz-Izquierdo S, Avila CM, Satovic Z, Palomino C, Gutierrez N, Ellwood SR, Phan H, Cubero J, Torres A (2012) Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. Theor Appl Genet 125:1767–1782

    Article  CAS  PubMed  Google Scholar 

  • Datta S, Kaashyap M, Gupta P (2015) Development of EST derived microsatellites markers in chickpea and their validation in diversity analysis. Indian J Biotechnol 14:55–58

    CAS  Google Scholar 

  • de Oliveira EJ, Alzate-Marin AL, Borem A, de Azeredo FS, de Barros EG, Moreira MA (2005) Molecular marker assisted selection for development of common bean lines resistant to angular leaf spot. Plant Breed 124:572–575

    Article  Google Scholar 

  • Delhaize E, Ma JF, Ryan PR (2012) Transcriptional regulation of aluminium tolerance genes. Trends Plant Sci 17:341–348

    Article  CAS  PubMed  Google Scholar 

  • Denby K, Gehring C (2005) Engineering drought and salinity tolerance in plants: lessons from genome-wide expression profiling in Arabidopsis. Trends Biotechnol 23:547–552

    Article  CAS  PubMed  Google Scholar 

  • Diapari M, Sindhu A, Bett K, Deokar A, Warkentin TD, Tar’an B (2014) Genetic diversity and association mapping of iron and zinc concentrations in chickpea (Cicer arietinum L.) Genome 57:459–468

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Ruiz R, Torres AM, Satovic Z, Gutierrez MV, Cubero JI, Román B (2010) Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations. Theor Appl Genet 120:909–919

    Article  PubMed  Google Scholar 

  • Dikshit HK, Singh A, Singh D, Aski MS, Prakash P, Jain N et al (2015) Genetic diversity in lens species revealed by EST and genomic simple sequence repeat analysis. PLoS ONE. doi:10.1371/journal.pone.0138101

    Google Scholar 

  • Dill GM (2005) Glyphosate-resistant crops: history, status and future. Pest Manag Sci 61:219–224

    Article  CAS  PubMed  Google Scholar 

  • Dong D, Fu X, Yuan F, Chen P, Zhu S, Li B, Yang Q, Yu X, Zhu D (2014) Genetic diversity and population structure of vegetable soybean (Glycine max (L.) Merr.) in China as revealed by SSR markers. Genet Resour Crop Evol 61:173–183

    Article  Google Scholar 

  • Duarte J, Rivière N, Baranger A, Aubert G, Burstin J, Cornet L, Lavaud C, Lejeune-Hénaut I, Martinant JP, Pichon JP, Pilet-Nayel ML, Boutet G (2014) Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea. BMC Genom 15:126–141

    Article  Google Scholar 

  • Dubey A, Farmer A, Schlueter J, Cannon SB, Abernathy B, Tuteja R, Woodward J, Shah T, Mulasmanovic B, Kudapa H, Raju NL, Gothalwal R, Pande S, Xiao Y, Town CD, Singh NK, May GD, Jackson S, Varshney RK (2011) Defining the transcriptome assembly and its use for genome dynamics and transcriptome profiling studies in pigeonpea (Cajanus cajan L.) DNA Res 18:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duc G, Agrama H, Bao S, Berger J, Bourion V, De Rone AM, Gowda CLL, Mikic A, Millot D, Singh KB, Tullu A, Vandenberg A, Patto MCV, Warkentin TD, Zongj X (2015) Breeding annual grain legumes for sustainable agriculture: new methods to approach complex traits and target new cultivar ideotypes. Crit Rev Plant Sci 34:381–411

    Article  Google Scholar 

  • Duke SO (2005) Taking stock of herbicide-resistant crops ten years after introduction. Pest Manag Sci 61:211–218

    Article  CAS  PubMed  Google Scholar 

  • Duke SO, Baerson SR, Rimando AM (2003) Herbicides: glyphosate. In JR Plimmer, DW Gammon, NN Ragsdale (eds) Encyclopedia of agrochemicals. Wiley, New York, NY

  • El-Rodeny W, Kimura M, Hirakawa H, Sabah A, Shirasawa K, Sato S, Tabata S, Sasamoto S, Watanabe A, Kawashima K, Kato M, Wada T, Tsuruoka H, Takahashi C, Minami C, Nanri K, Nakayama S, Kohara M, Yamada M, Kishida Y, Fujishiro T, Isobe S (2014) Development of EST-SSR markers and construction of a linkage map in faba bean (Vicia faba). Breed Sci 64:252–263

    Article  PubMed  PubMed Central  Google Scholar 

  • ERS (2012) Economic research service, United States Department of Agriculture (USDA). Soybeans & oil crops. Overview. http://www.ers.usda.gov/topics/crops/soybeans-oil-crops/. Accessed 28 Feb 2015

  • ERS (2015) Economic research service, United States Department of Agriculture (USDA). In: Ash M (ed) Oil crops outlook, pp. 11. http://usda.mannlib.cornell.edu/usda/current/OCS/OCS-02-12-2015.pdf. Accessed 28 Feb 2015

  • Falconer DS, Mackay TFC (1996) An introduction to quantitative genetics. Prentice Hall, London

    Google Scholar 

  • Fanjiang K, Haiyang N, Dong C, Ying L, Fangfang W, Jialin W, Sijia L, Xiaohui Y, Elroy C, Jun A, Baohui L (2014) A new dominant gene conditions early flowering and maturity in soybean. Crop Sci 54:2529–2535

    Article  CAS  Google Scholar 

  • FAO (2010) Food and agriculture organization of the United Nations. Appendix 2: major germplasm collections. In: The second report on state of the world’s plant genetic resources for food and agriculture, pp. 243–283. http://www.fao.org/docrep/013/i1500e/i1500e12.pdf. Accessed 28 Feb 2015

  • FAO (2015) Food and agriculture organization of the United Nations. Conditions for sustainable development. http://www.fao.org/fishery/topic/13297/en. Accessed 28 Feb 2015

  • FAOSTAT (2013) Food and agriculture organization of the United Nations, statistics division. http://faostat3.fao.org/home/E. Accessed 28 Feb 2015

  • Fernandes CA, Boiteux LS (2015) Genetic control and transgressive segregation of zinc, iron, potassium, phosphorus, calcium, and sodium accumulation in cowpea (Vigna unguiculata) seeds. Genet Mol Res 14:259–268

    Article  CAS  Google Scholar 

  • Flint F (2011) Mapping quantitative traits and strategies to find quantitative trait genes. Methods 53:163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fondevilla S, Torres AM, Moreno MT, Rubiales D (2007) Identification of a new gene for resistance to powdery mildew in Pisum fulvum, a wild relative of pea. Breed Sci 57:1–4

    Article  Google Scholar 

  • Fratini R, Durán Y, García P, Pérez de la Vega M (2007) Identification of quantitative trait loci (QTL) for plant structure, growth habit and yield in lentil. Span J Agric Res 5:348–356

    Article  Google Scholar 

  • Gepts P, Papa R (2003) Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. Environ Biosaf Res 2:89–103

    Article  Google Scholar 

  • Gepts P, Beavis WD, Brummer EC, Shoemaker RC, Stalker HT, Weeden NF, Young ND (2005) Legumes as a model plant family. Genomics for food and feed report of the cross-legume advances through genomics conference. Plant Physiol 137:1228–1235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill-Langarica HR, Muruaga-Martinez JS, Vargas-Vazquez MLP, Rosales-Serna R, Mayek-Perez N (2011) Genetic diversity analysis of common beans based on molecular markers. Genet Mol Biol 34:595–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci. doi:10.3389/fpls.2014.00151

    PubMed  PubMed Central  Google Scholar 

  • Gonçalves-Vidigal MC, Mora F, Bignotto TS, Ferreira Munhoz RE, de Souza LD (2008) Heritability of quantitative traits in segregating common bean families using a Bayesian approach. Euphytica 164:551–558

    Article  Google Scholar 

  • Govindarajulu M, Kim SY, Libault M, Berg RH, TanakaK, Stacey G, Taylor CG (2009) P GS52 ecto-apyrase plays a critical role during soybean nodulation. Plant Physiol 149:994–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan R, Chen J, Jiang J, Liu G, Liu Y, Tian L, Yu L, Chang R, Qiu LJ (2014) Mapping and validation of a dominant salt tolerance gene in the cultivated soybean (Glycine max) variety Tiefeng 8. Crop J 2:358–365

    Article  Google Scholar 

  • Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicas. New Phytol 182:200–212

    Article  CAS  PubMed  Google Scholar 

  • Gujaria-Verma N, Vail SL, Carrasquilla-Garcia N, Penmetsa RV, Cook DR, Farmer AD, Vandenberg A, Bett KE (2014) Genetic mapping of legume orthologs reveals high conservation of synteny between lentil species and the sequenced genomes of Medicago and chickpea. Front Plant Sci. doi:10.3389/fpls.2014.00676

    PubMed  PubMed Central  Google Scholar 

  • Guo X, Chronis D, De La Torre CM, Smeda J, Wang X, Mitchum MG (2015) Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors. Plant Biotechnol J. doi:10.1111/pbi.12313

    Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217

    Google Scholar 

  • Gupta D, Taylor PWJ, Inder P, Phan HTT, Ellwood SR, Mathur PN, Sarker S, Ford R (2012) Integration of EST-SSR markers of Medicago truncatula into intraspecific linkage map of lentil and identification of QTL conferring resistance to ascochyta blight at seedling and pod stages. Mol Breed 30:429–439

    Article  CAS  Google Scholar 

  • Gusta LV, Wisniewski M (2013) Understanding plant cold hardiness: an opinion. Physiol Plant 147:4–14

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez N, Palomino C, Satovic Z, Ruiz-Rodríguez MD, Vitale S, Gutiérrez MV, Rubiales D, Kharrat M, Amri M, Emeran AA, Cubero JI, Atienza SG, Torres AM, Avila CM (2013) QTLs for Orobanche spp. resistance in faba bean: identification and validation across different environments. Mol Breed 32:909–922

    Article  Google Scholar 

  • Hart JP, Griffiths PD (2015) Genotyping-by-sequencing enabled mapping and marker development for the By-2 potyvirus resistance allele in common bean. Plant Genome 8. doi:10.3835/plantgenome2014.09.0058

  • Heath KD, Tiffin P (2009) Stabilizing mechanisms in a legume–rhizobium mutualism. Evol Int J org Evol 63:652–662

    Article  Google Scholar 

  • Hegay S, Ortiz R, Garkava-Gustavsson L, Hovmalm HP, Geleta M (2013) Marker-aided breeding for resistance to bean common mosaic virus in Kyrgyz bean cultivars. Euphytica 193:67–78

    Article  CAS  Google Scholar 

  • Hema M, Sreenivasulu P, Patil BL, Kumar PL, Reddy DVR (2014) Tropical food legumes: virus diseases of economic importance and their control. Adv Virus Res 90:431–505

    Article  PubMed  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation. Plant Soil 311:1–18

    Article  CAS  Google Scholar 

  • Herrmann D, Barre P, Santoni S, Julier B (2010) Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa. Theor Appl Genet 121:865–876

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Zhang D, Zhang G, Kan G, Hong D, Yu D (2014) Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.) Breed Sci 63:441–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hungria M, Franchini JC, Campo RJ, Crispino CC, Moraes JZ, Sibaldelli RNR, Mendes IC, Arihara J (2006) Nitrogen nutrition of soybean in Brazil: contributions of biological N2 fixation and N fertilizer to grain yield. Can J Plant Sci 86:927–939

    Article  Google Scholar 

  • Huynh BL, Ehlers JD, Ndeve A, Wanamaker S, Lucas MR, Close TJ, Roberts PA (2015) Genetic mapping and legume synteny of aphid resistance in African cowpea (Vigna unguiculata L. Walp.) grown in California. Mol Breed. doi:10.1007/s11032-015-0254-0

    PubMed  PubMed Central  Google Scholar 

  • Hwang EY, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genom 15:1–12

    Article  CAS  Google Scholar 

  • Iquira E, Humira S, François B (2015) Association mapping of QTLs for sclerotinia stem rot resistance in a collection of soybean plant introductions using a genotyping by sequencing (GBS) approach. BMC Plant Biol. doi:10.1186/s12870-014-0408-y

    PubMed  PubMed Central  Google Scholar 

  • Jacobs TM, LaFayette PR, Schmitz RJ, Parrott WA (2015) Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol. doi:10.1186/s12896-015-0131-2

    PubMed  PubMed Central  Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PBK, Nguyen H, Sutton T, Varshney RK (2014) Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genom. doi:10.1007/s00438-014-0932-3

    Google Scholar 

  • Jaganathan D, Thudi M, Kale S, Azam S, Roorkiwal M, Gaur PM, Kishor PBK, Nguyen H, Sutton T, Varshney RK (2015) Genotyping-by-sequencing based intra-specific genetic map refines a ‘‘QTL-hotspot” region for drought tolerance in chickpea. Mol Genet Genom 290:559–571

    Article  CAS  Google Scholar 

  • Jain S, Kumar A, Mamidi S, McPhee K (2014) Genetic diversity and population structure among pea (Pisum sativum L.) cultivars as revealed by simple sequence repeat and novel genic markers. Mol Biotechnol 56:925–938

    Article  CAS  PubMed  Google Scholar 

  • James C (2015) 20th anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015. ISAAA briefs no 51. The international service for the acquisition of agri-biotech applications, Ithaca, NY, USA. http://www.isaaa.org/resources/publications/briefs/51/default.asp. Accessed 20 June 2016

  • Jarquín D, Kocak K, Posadas L, Hyma K, Jedlicka J, Graef G, Lorenz A (2014) Genotyping by sequencing for genomic prediction in a soybean breeding population. BMC Genom 15:740

    Article  Google Scholar 

  • Joensen L, Semino S (2004) Argentina’s torrid love affair with the soybean. Seedling 5–10. https://www.grain.org/article/entries/435-argentina-s-torrid.pdf. Accessed 15 June 2016

  • Jones HD (2015) Regulatory uncertainty over genome editing. Nat Plants 1. doi:10.1038/NPLANTS.2014.11

  • Jones SI, Vodkin LO (2013) Using RNA-Seq to profile soybean seed development from fertilization to maturity. PLoS ONE. doi:10.1371/journal.pone.0059270

    Google Scholar 

  • Julier B, Bernard K, Gibelin C, Huguet T, Lelièvre F (2010) QTL for water use efficiency in alfalfa. In: Huyghe C (Ed) Sustainable use of genetic diversity in forage and turf breeding. Springer, New York, pp 433–436

    Chapter  Google Scholar 

  • Kahriman A, Temel HY, Aydoğan A, Tanyola MB (2014) Major quantitative trait loci for flowering time in lentil. Turk J Agric For 38:1–8

    Article  CAS  Google Scholar 

  • Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang TY, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M (2014) A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet 127:1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Cogan NOI, Forster JW, Paull JG (2014a) Assessment of genetic diversity in faba bean based on single nucleotide polymorphism. Diversity 6:88–101

  • Kaur S, Kimber RBE, Cogan NOI, Materne M, Forster JW, Paull JG (2014b) SNP discovery and high-density genetic mapping in faba bean (Vicia faba L.) permits identification of QTLs for ascochyta blight resistance. Plant Sci 217:47–55

  • Kaur S, Cogan NOI, Stephens A, Noy D, Butsch M, Forster JW, Materne M (2014c) EST-SNP discovery and dense genetic mapping in lentil (Lens culinaris Medik.) enable candidate gene selection for boron tolerance. Theor Appl Genet 127:703–713

  • Khalekar GD, Akhare AA, Gahukar SJ, Singh NK, Kumar M (2013) Identification of simple sequence repeat markers associated with wilt resistance in pigeonpea. J Environ Biol 35:955–960

    Google Scholar 

  • Khazaei H, O’Sullivan DM, Jones H, Pitts N, Sillanpää MJ, Pärssinen P, Manninen O, Stoddard FL (2015) Flanking SNP markers for vicine–convicine concentration in faba bean (Vicia faba L.) Mol Breed. doi:10.1007/s11032-015-0214-8

    Google Scholar 

  • Khodambashi M, Bitaraf N, Hoshmand S (2012) Generation mean analysis for grain yield and its related traits in lentil. J Agr Sci Technol 14:609–616

    Google Scholar 

  • Khu DM, Reyno R, Han Y, Zhao PX, Bouton JH, Brummer EC, Monteros MJ (2013) Identification of aluminum tolerance quantitative trait loci in tetraploid alfalfa. Crop Sci 53:148–163

    Article  CAS  Google Scholar 

  • Klein A, Houtin H, Rond C, Marget P, Jacquin F, Boucherot K, Huart M, Rivière N, Boutet G, Lejeune-Hénaut I (2014) QTL analysis of frost damage in pea suggests different mechanisms involved in frost tolerance. Theor Appl Genet 127:1319–1330

    Article  PubMed  Google Scholar 

  • Koester RP, Skoneczka JA, Cary TR, Diers BW, Ainsworth EA (2014) Historical gains in soybean (Glycine max Merr.) seed yield are driven by linear increases in light interception, energy conversion, and partitioning efficiencies. J Exp Bot. doi:10.1093/jxb/eru187

    PubMed  PubMed Central  Google Scholar 

  • Kouchi H, Shimomura K, Hata S, Hirota A, Wu GJ, Kumagai H, Tajima S, Suganuma N, Suzuki A, Aoki T, Hayashi M, Yokoyama T, Ohyama T, Asamizu E, Kuwata C, Shibata D, Tabata S (2004) Large-scale analysis of gene expression profiles during early stages of root nodule formation in a model legume, Lotus japonicus. DNA Res 11:263–274

    Article  CAS  PubMed  Google Scholar 

  • Krajewski P, Bocianowski J, Gawłowska M, Kaczmarek Z, Pniewski T, Święcicki W, Wolko B (2012) QTL for yield components and protein content: a multienvironment study of two pea (Pisum sativum L.) populations. Euphytica 183:323–336

    Article  CAS  Google Scholar 

  • Kubo A, Aono M, Nakajima N et al (2013) Characterization of hybrids between wild and genetically modified glyphosate-tolerant soybeans. Plant Biotechnol. doi:10.5511/plantbiotechnology.13.0314a

    Google Scholar 

  • Kumar S, Ali M (2006) GE interaction and its breeding implications in pulses. Bot 56:31–36

    Google Scholar 

  • Kumar J, Choudhary AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Kumar J, Pratap A, Solanki RK, Gupta DS, Goyal A, Chaturvedi SK, Nadarajan N, Kumar S (2012) Genomic resources for improving food legume crops. J Agric Sci 150:289–318

    Article  CAS  Google Scholar 

  • Kumar S, Rajendran K, Kumar J, Hamwieh A, Baum M (2015) Current knowledge in lentil genomics and its application for crop improvement. Front Plant Sci. doi:10.3389/fpls.2015.00078

    Google Scholar 

  • Labdi M, Ghomari S, Hamdi S (2015) Combining ability and gene action estimates of eight parent diallel crosses of chickpea for ascochyta blight. Adv Agric. http://dxdoi.org/10.1155/2015/832597

  • Lara LA, dos Santos JB, Veloso JS, Balestre M, Alves FC, Leite ME (2014) Identification of QTLs for resistance to Sclerotinia sclerotiorum in carioca common bean by the moving away method. ISRN Mol Biol 1–7. doi:10.1155/2014/828102

  • Lavania D, Siddiqui MH, Al-Whaibi MH, Singh AK, Kumar R, Grover A (2015) Genetic approaches for breeding heat stress tolerance in faba bean (Vicia faba L.) Acta Physiol Plant. doi:10.1007/s11738-014-1737-z

    Google Scholar 

  • Lawlor HJ, Siddique KHM, Sedgley RH, Thurling N (1998) Improving cold tolerance and insect resistance in chickpea and the use of AFLPS for the identification of molecular markers for these traits. Acta Hortic (ISHS) 461:185–119

    Article  CAS  Google Scholar 

  • Lee S, Mian MAR, Sneller CH, Wang H, Dorrance AE, McHale LK (2014a) Joint linkage QTL analyses for partial resistance to Phytophthora sojae in soybean using six nested inbred populations with heterogeneous conditions. Theor Appl Genet 127:429–444

  • Lee S, Jun TH, Michel AP, Mian MAR (2014b) SNP markers linked to QTL conditioning plant height, lodging, and maturity in soybean. Euphytica 203:521–532

  • Légère A (2005) Risks and consequences of gene flow from herbicide-resistant crops: canola (Brassica napus L) as a case study. Pest Manag Sci 61:292–300

    Article  PubMed  CAS  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NOI, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S (2014) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.) BMC Plant Biol. doi:10.1186/1471-2229-13-161

    Google Scholar 

  • Li Z, Liu ZB, Xing A, Moon BP, Koellhoffer JP, Huang L, Ward RT, Clifton E, Falco SC, Cigan AM (2015) Cas9-guide RNA directed genome editing in soybean. Plant Physiol 169:960–970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Link W, Balko C, Stoddard FL (2010) Winter hardiness in faba bean: physiology and breeding. Field Crops Res 115:287–296

    Article  Google Scholar 

  • Liu YF, Li QT, Lu X, Song QX, Lam SM, Zhang WK, Ma B, Lin Q, Man WQ, Du WG, Shui GH, Chen SY, Zhang JS (2014) Soybean GmMYB73 promotes lipid accumulation in transgenic plants. BMC Plant Biol 14:1–16

    Article  Google Scholar 

  • Lulsdorf MM, Croser JS, Ochatt S (2011) Androgenesis and doubled-haploid production in food legumes. In: Pratap A, Kumar J (eds) Biology and breeding of food legumes. CABI International, Hyderabad, pp. 159–177

    Chapter  Google Scholar 

  • Mackay I, Powell W (2006) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  CAS  Google Scholar 

  • Madrid E, Seoane P, Claros MG, Barro F, Rubio J, Gil J, Millán T (2014) Genetic and physical mapping of the QTLAR3 controlling blight resistance in chickpea (Cicer arietinum L). Euphytica 198:69–78

    Article  CAS  Google Scholar 

  • Main D, Cheng CH, Ficklin SP, Sanad M, Jung S, Lee T, Zheng P, Coyne C, McGee R, Mockaitis K (2014) The cool season food legume database: an integrated resource for basic, translational and applied research. International Plant and Animal Genome Conference, paper 11249. San Diego, CA, USA

  • Malik SR, Shabbir G, Zubir M, Iqbal SM, Ali A (2014) Genetic diversity analysis of morpho-genetic traits in Desi chickpea (Cicer arietinum L.) Int J Agric 16:956–960

    Google Scholar 

  • Martins JAS, Juliatti FC (2014) Genetic control of partial resistance to Asian soybean rust. Acta Sci Agron 36:11–17

    Article  Google Scholar 

  • McCord P, Gordon V, Saha G, Hellinga J, Vandemark G, Larsen R, Smith M, Miller D (2014) Detection of QTL for forage yield, lodging resistance and spring vigor traits in alfalfa (Medicago sativa L.) Euphytica 200:269–279

    Article  Google Scholar 

  • Mekonnen F, Mekbib F, Kumar S, Ahmed S, Sharma TR (2016) Molecular diversity and population structure of the Ethiopian lentil (Lens Culinaris Medikus) genotype assessment using SSR markers. J Crop Sci Biotechnol 19:1–11

    Article  Google Scholar 

  • Mendes IC, Hungria M, Vargas MAT (2003) Soybean response to starter nitrogen and Bradyrhizobium inoculation on a Cerrado oxisol under no-tillage and conventional tillage systems. Rev Bras Ciênc Solo 27:81–87

    Article  Google Scholar 

  • Metz PLJ, Buiel AAM, Vannorel A, Helsper JPFG (1993) Rate and inheritance of cross-fertilization in faba bean (Vicia faba L). Euphytica 66:127–133

    Article  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6:1–7

    Article  Google Scholar 

  • Michno JM, Wang X, Liu J, Curtin SJ, Kono TJY, Stupar RM (2015) Cas9 enzyme CRISPR/Cas mutagenesis of soybean and Medicago truncatula using a new web-tool and a modified. GM Crops Food 6:243–252

    Article  PubMed  PubMed Central  Google Scholar 

  • Miklas PN, Larsen RC, Riley R, Kelly JD (2000) Potential marker-assisted selection for bc-1 2 resistance to bean common mosaic potyvirus in common bean. Euphytica 116:211–219

    Article  CAS  Google Scholar 

  • Miklas PN, Kelly JD, Steadman JR, McCoy S (2012) Release of partial white mold resistance pinto USPT-WM-12. Annu Rep Bean Improv Coop 55:291–292

    Google Scholar 

  • Mir RR, Kudapa H, Srikanth S, Saxena RK, Sharma A, Azam S, Saxena K, Penmetsa RV, Varshney RK (2014) Candidate gene analysis for determinacy in pigeonpea (Cajanus spp.) Theor Appl Genet 127:2663–2678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobini SH, Lulsdorf M, Warkentin TD, Vandenberg A (2015) Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In Vitro Cell Dev Biol Plant 51:71–79

    Article  CAS  Google Scholar 

  • Mohammed H, Akromah R, Abudulai M, Mashark SA, Issah A (2014) Genetic analysis of resistance to pod shattering in soybean. J Crop Improv 28:17–26

    Article  CAS  Google Scholar 

  • Muchero W, Ehlers JD, Roberts PA (2010) QTL analysis for resistance to foliar damage caused by Thrips tabaci and Frankliniella schultzei (Thysanoptera: Thripidae) feeding in cowpea [Vigna unguiculata (L.) Walp.] Mol Breed 25:47–56

    Article  PubMed  Google Scholar 

  • Muchero W, Roberts PA, Diop NN, Drabo I, Cisse N, Close TJ, Muranaka S, Boukar O, Ehlers JD (2013) Genetic architecture of delayed senescence, biomass, and grain yield under drought stress in cowpea. PLoS ONE 8. doi:10.1371/journal.pone.0070041

  • Mulato BM, Möller M, Zucchi MI, Quecini V, Pinheiro JB (2010) Genetic diversity in soybean germplasm identified by SSR and EST-SSR markers. Pesqui Agropecu Bras 45:276–283

    Google Scholar 

  • Navarro FM, Sass ME, Nienhuis J (2009) Marker-facilitated selection for a major QTL associated with root rot resistance in snap bean (Phaseolus vulgaris L.) Crop Sci 49:850–856

    Article  CAS  Google Scholar 

  • Nemli S, Asciogul TK, Ates D, Esiyok D, Tanyolac MB (2016) Snp identification through genotyping by sequencing and genome-wide association study (GWAS) of pod traits in common bean. International plant and animal genome conference, paper 19798. San Diego, CA, USA

  • Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  • O’Rourke JA, Iniguez LP, Fu F, Bucciarelli B, Miller SS, Jackson SA, McClean PE, Li J, Dai X, Zhao PX, Hernandez G, Vance CP (2014) An RNA-Seq based gene expression atlas of the common bean. BMC Genom. doi:10.1186/1471-2164-15-866

    Google Scholar 

  • Ochatt S (2015) Agroecological impact of an in vitro biotechnology approach of embryo development and seed filling in legumes. Agron Sustain Dev 35:535–552

    Article  CAS  Google Scholar 

  • Ochatt S, Sangwan RS, Marget P, Assoumou Ndong Y, Rancillac M, Perney P (2002) New approaches towards the shortening of generation cycles for faster breeding of protein legumes. Plant Breed 121:436–440

    Article  Google Scholar 

  • Okii D, Tukamuhabwa P, Odong T, Namayanja A, Mukabaranga J, Paparu P, Gepts P (2014a) Morphological diversity of tropical common bean germplasm. Afr Crop Sci J 22:59–67

  • Okii D, Chilagane LA, Tukamuhabwa P, Maphosa M (2014b) Application of bioinformatics in crop improvement: annotating the putative soybean rust resistance gene Rpp3 for enhancing marker assisted selection. J Proteom Bioinform 7:1–9

  • Oliveira HR, Tomás D, Silva M, Lopes S, Viegas W, Veloso MM (2016) Genetic diversity and population structure in Vicia faba L. landraces and wild related species assessed by nuclear SSRs. PLoS ONE. doi:10.1371/journal.pone.0154801

    Google Scholar 

  • Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci 35:1451–1461

    Article  CAS  Google Scholar 

  • Pagan JD, Child JJ, Scowcroft WR, Gibson AH (1975) Nitrogen fixation by Rhizobium cultured on a defined medium. Nature 256:406–407

    Article  CAS  Google Scholar 

  • Pandey MK, Roorkiwa M, Singh VK, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK (2016) Emerging genomic tools for legume breeding: current status and future prospects. Front Plant Sci 7. doi:10.3389/fpls.2016.00455

  • Patil BS, Ravikumar RL, Bhat JS, Soregaon CD (2014) Molecular mapping of QTLs for resistance to early and late Fusarium wilt in chickpea. Czech J Genet Plant Breed 50:171–176

    CAS  Google Scholar 

  • Peix A, Ramírez-Bahena MH, Velázquez E, Bedmar EJ (2015) Bacterial associations with legumes. Crit Rev Plant Sci 34:1–3

    Article  Google Scholar 

  • Piepho H, Möhring J (2007) Computing heritability and selection response from unbalanced plant breeding trials. Genetics 177:1881–1888

    Article  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Pottorff MO, Li GJ, Ehlers JD (2014) Genetic mapping, synteny, and physical location of two loci for Fusarium oxysporum f. sp tracheiphilum race 4 resistance in cowpea [Vigna unguiculata (L.) Walp]. Mol Breed 33:779–791

    Article  CAS  PubMed  Google Scholar 

  • Powles SB (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64:360–365

    Article  CAS  PubMed  Google Scholar 

  • Pratap A, Kumar J (eds) (2011) Biology and breeding of food legumes. CABI International, Hyderabad pp. 405

    Google Scholar 

  • Qi X, Li MW, Xie M, Liu X, Ni M, Shao G, Song C et al (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun. doi:10.1038/ncomms5340

    Google Scholar 

  • Raffi SA, Nath UK (2004) Variability, heritability, genetic advance and relationships of yield and yield contributing characters in dry bean (Phaseolus vulgaris L.) J Biol Sci 4:157–159

    Article  Google Scholar 

  • Ragagnin VA, De Souza TLPOO, Sanglard DA, Arruda KMA, Costa MR, Alzate-Marin AL, de S., Carneiro JE, Moreira MA, De Barros G (2009) Development and agronomic performance of common bean lines simultaneously resistant to anthracnose, angular leaf spot and rust. Plant Breed 128:156–163

    Article  Google Scholar 

  • Raggi L, Tiranti B, Negri V (2013) Italian common bean landraces: diversity and population structure. Genet Resour Crop Evol 60:1515–1530

    Article  Google Scholar 

  • Ramamurthy RK, Jedlicka J, Graef GL, Waters BM (2014) Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.] Mol Breed 34:431–445

    Article  CAS  Google Scholar 

  • Ranalli P, Cubero JI (1997) Bases for genetic improvement of grain legumes. Field Crop Res 53:69–82

    Article  Google Scholar 

  • Rathi AS, Sindhu JS, Singh VS (2002) Variability, heritability and genetic advance in lentil. Legum Res 25:113–116

    Google Scholar 

  • Reid RJ (2013) Boron toxicity and tolerance in crop plants. In: Tuteja N, Gill SS (eds) Crop improvement under adverse conditions. Springer, New York, pp 333–346

    Chapter  Google Scholar 

  • Ribalta FM, Croser JD, Erskine W, Finnegan PM, Lulsdorf MM, Ochatt SJ (2014) Antigibberellin-induced reduction of internode length favors in vitro flowering and seed-set in different pea genotypes. Biol Plant 58:39–46

    Article  CAS  Google Scholar 

  • Richard MMS, Pflieger S, Sévignac M, Thareau V, Blanchet S, Li Y, Jackson SA, Geffroy V (2014) Fine mapping of Co-x, an anthracnose resistance gene to a highly virulent strain of Colletotrichum lindemuthianum in common bean. Theor Appl Genet 127:1653–1666

    Article  CAS  PubMed  Google Scholar 

  • Robins JG, Bauchan GR, Brummer EC (2007) Genetic mapping forage yield, plant height, and regrowth at multiple harvests in tetraploid alfalfa (L.) Crop Sci 47:11–18

    Article  CAS  Google Scholar 

  • Rodrigues P, Moro R, da Silva G, Chiorato A, Morais S, Briñez B, Da Costa L, Franco A, Aranha L, Kelly JD, Benchimol-Reis LL (2014) Quantitative analysis of race-specific resistance to Colletotrichum lindemuthianum in common bean. Mol Breed 34:1313–1329

    Article  CAS  Google Scholar 

  • Rubiales D, Mikic A (2015) Introduction: legumes in sustainable agriculture. Crit Rev Plant Sci 34:1–3

    Article  Google Scholar 

  • Rubiales D, Fondevilla S, Chen W, Gentzbittel L, Higgins TJV, Castillejo MA, Singh KB, Rispaila N (2015) Achievements and challenges in legume breeding for pest and disease resistance. Crit Rev Plant Sci 34:195–236

    Article  CAS  Google Scholar 

  • Rubio MC, Bustos-Sanmamed P, Clemente MR, Becana M (2009) Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus. New Phytol 181:851–859

    Article  CAS  PubMed  Google Scholar 

  • Saha GC, Sarker A, Chen W, Vandemark GJ, Muehlbauer FJ (2010) Inheritance and linkage map positions of genes conferring resistance to stemphylium blight in lentil. Crop Sci 50:1831–1839

    Article  CAS  Google Scholar 

  • Sakiroglu M, Brummer EC (2016) Identification of loci controlling forage yield and nutritive value in diploid alfalfa using GBS-GWAS. International plant and animal genome conference, paper 21068. San Diego, CA, USA

  • Sakiyama NS, Ramos HCC, Caixeta ET, Pereira MG (2014) Plant breeding with marker-assisted selection in Brazil. Crop Breed Appl Biotechnol 14:54–60

    Article  Google Scholar 

  • Salvagiotti F, Cassman KG, Specht JE, Walters DT, Weiss A, Dobermann A (2008) Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review. Field Crops Res 108:1–13

    Article  Google Scholar 

  • Sanchez MA (2015) Conflict of interest and evidence base for GM crops food/feed safety research. Nat Biotechnol 33:135–137

    Article  CAS  PubMed  Google Scholar 

  • Sanchez DH, Lippold F, Redestig H, Hannah MA, Erban A, Kramer U, Kopka J, Udvardi MK (2008) Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus. Plant J 53:973–987

    Article  CAS  PubMed  Google Scholar 

  • Sandhu D, Gao H, Cianzio S, Bhattacharyya MK (2004) Deletion of a disease resistance nucleotide-binding-site leucine-richrepeat-like sequence is associated with the loss of the phytophthora resistance gene Rps4 in soybean. Genetics 168:2157–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena MS, Bajaj D, Das S, Kujur A, Kumar V, Singh M, Bansal KC, Tyagi AK, Parida SK (2014) An integrated genomic approach for rapid delineation of candidate genes regulating agro-morphological traits in chickpea. DNA Res. doi:10.1093/dnares/dsu031

    PubMed  PubMed Central  Google Scholar 

  • Scheible WR, Morcuende R, Czechowski T et al (2004) Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol 136:2483–2499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S et al (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat genet 46:707–713

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Walker SA, Sagan M, Duc G, Ellis THN, Downie JA (2002) Mapping of the nodulation loci sym9 and sym10 of pea (Pisum sativum). Theor Appl Genet 104:1312–1316

    Article  CAS  PubMed  Google Scholar 

  • Schröder S, Mamidi S, Lee R, McKain MR, McClean PE, Osorno JE (2016) Optimization of genotyping by sequencing (GBS) data in common bean (Phaseolus vulgaris L.) Mol Breed. doi:10.1007/s11032-015-0431-1

    Google Scholar 

  • Schwember AR (2008) An update on genetically modified crops. Cienc Investig Agrar 35:231–250

    Google Scholar 

  • Servie RF (2007) Agbiotech. A growing threat down on the farm. Science 316:1114–1117

    Article  Google Scholar 

  • Shi A, Chen P, Dexiao L et al (2008) Pyramiding multiple genes for resistance to soybean mosaic virus in soybean using molecular markers. Mol Breed. doi:10.1007/s11032-008-9219-x

    Google Scholar 

  • Shunmugam ASK, Liu X, Stonehouse R, Tar’an B, Bett KE, Sharpe AG, Warkentin TD (2014) Mapping seed phytic acid concentration and iron bioavailability in a pea recombinant 2 inbred line population. Crop Sci. doi:10.2135/cropsci2014.08.0544

    Google Scholar 

  • Sindhu A, Ramsay L, Sanderson LA, Stonehouse R, Li R, Condie J, Shunmugam ASK, Liu Y, Jha AB, Diapari M, Burst J (2014) Gene-based SNP discovery and genetic mapping in pea. Theor Appl Genet 127:2225–2241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh D, Choudhary AK (2010) Inheritance pattern of aluminum tolerance in pea. Plant Breed 129:688–692

    Article  CAS  Google Scholar 

  • Singh NP, Pratap A (2011) Food Legumes for Nutritional Security and Health Benefits. In: Singh U, Praharaj SC, Singh SS, Singh PN (eds) Biofortification of food crops. Springer, New Delhi, pp. 41–50

    Google Scholar 

  • Singh A, Singh S, Babu JDP (2011) Heritability, character association and path analysis studies in early segregating population of field pea (Pisum sativum L. var. arvense). Int J Plant Breed Genet 5:86–92

    Article  Google Scholar 

  • Singh SP, Terán H, Schwartz HF, Otto K, Debouck DG, Roca W, Lema M (2012) White mold–resistant, interspecific common bean breeding line VRW 32 derived from Phaseolus costaricensis. J Plant Regist. doi:10.3198/jpr2012.02.0131crg

    Google Scholar 

  • Singh VK, Garg R, Jain M (2013) A global view of transcriptome dynamics during flower development in chickpea by deep sequencing. Plant Biotechnol J 11:691–701

    Article  CAS  PubMed  Google Scholar 

  • Slater A, Scott NW, Fowler MR (2003) Plant biotechnology: the genetic manipulation of plants. Oxford University Press, Oxford

    Google Scholar 

  • Smýkal P, Coyne CJ, Ambrose MJ et al (2015) Legume crops phylogeny and genetic diversity for science and breeding. Crit Rev Plant Sci 34:43–104

    Article  Google Scholar 

  • Somers DA, Samac DA, Olhoft PM (2003) Recent advances in legume transformation. Plant Physiol 131:892–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son S, Oh CH, Bae JH, Lee H, An CS (2015) GmREM1.1 and GmREM2.1, which encodes the remorin proteins in soybeans, have distinct roles during root nodule development. J Plant Biol 58:17–25

    Article  CAS  Google Scholar 

  • Song B, Shen L, Wei X, Guo B, Tuo Y, Tian F, Han Z, Wang X, Li W, Liu S (2014) Marker-assisted backcrossing of a null allele of the α-subunit of Soybean (Glycine max) β-conglycinin with a Chinese soybean cultivar (a). The development of improved lines. Plant Breed 133:638–648

    Article  CAS  Google Scholar 

  • Sorkheh K, Malysheva-Otto LV, Wirthensohn MG, Tarkesh-Esfahani S, Martínez-Gómez P (2008) Linkage disequilibrium, genetic association mapping and gene localization in crop plants. Genet Mol Biol 31:805–814

    Article  Google Scholar 

  • Speiser B, Stolze M, Oehen B et al (2013) Sustainability assessment of GM crops in a Swiss agricultural context. Agron Sustain Dev. doi:10.1007/s13593-012-0088-7

    Google Scholar 

  • Stephens A, Lombardi M, Cogan NOI, Forster JW, Hobson K, Materne M, Kaur S (2014) Genetic marker discovery, intraspecific linkage map construction and quantitative trait locus analysis of ascochyta blight resistance in chickpea (Cicer arietinum L.) Mol Breed 33:297–313

    Article  CAS  Google Scholar 

  • Stewart CN et al (2003) Transgene introgression form genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    Article  CAS  PubMed  Google Scholar 

  • Sudheesh S, Lombardi M, Leonforte A, Cogan NOI, Materne M, Forster JW, Kaur S (2014) Consensus genetic map construction for field pea (Pisum sativum L.), trait dissection of biotic and abiotic stress tolerance and development of a diagnostic marker for the er1 powdery mildew resistance gene. Plant Mol Biol Report 1–13

  • Sun J, Li L, Zhao J, Huang J, Yan Q, Xing H, Guo N (2014) Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr.] Theor Appl Genet 127:913–919

    Article  CAS  PubMed  Google Scholar 

  • Surekha Ch, Kumari KN, Aruna LV, Suneetha G, Arundhati A, Kishor PVK (2014) Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell Tiss Organ Cult 116:27–36

    Article  CAS  Google Scholar 

  • Švábová L, Griga M (2008) The effect of cocultivation treatments on transformation efficiency in pea (Pisum sativum L.) Plant Cell Tiss Organ Cult 95:293–304

    Article  CAS  Google Scholar 

  • Tahir M, Vandenberg A, Chibbar RN (2011) Influence of environment on seed soluble carbohydrates in selected lentil cultivars. J Food Compos Anal 24:596–602

    Article  CAS  Google Scholar 

  • Tang L, Cai H, Zhai H, Luo X, Wang Z, Cui L, Bai X (2014) Overexpression of Glycine soja WRKY20 enhances both drought and salt tolerance in transgenic alfalfa (Medicago sativa L.) Plant Cell Tiss Organ Cult 118:77–86

    Article  CAS  Google Scholar 

  • Tavaud-Pirra M, Sartre P, Nelson R, Santoni S, Texier N, Roumet P (2009) Genetic Diversity in a Soybean Collection. Crop Sci 49:895–902

    Article  CAS  Google Scholar 

  • Teshome A, Bryngelsson T, Dagne K, Geleta M (2015) Assessment of genetic diversity in Ethiopian field pea (Pisum sativum L.) accessions with newly developed EST-SSR markers. BMC Genet 16:102–113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative (2000) Arabidopsis thaliana genome sequence. Nature 408:791–826

    Article  Google Scholar 

  • Timmerman-Vaughan GM, Frew TJ, Butler R, Murray S, Gilpin M, Falloon K, Johnston P, Lakeman MB, Russell A, Khan T (2004) Validation of quantitative trait loci for Ascochyta blight resistance in pea (Pisum sativum L.), using populations from two crosses. Theor Appl Genet 109:1620–1631

    Article  CAS  PubMed  Google Scholar 

  • Tivoli B, Banniza S (2007) Comparison of the epidemiology of ascochyta blights on grain legumes. Eur J Plant Pathol 119:59–76

    Article  Google Scholar 

  • Toker C (2004) Estimates of broad-sense heritability for seed yield and yield criteria in faba bean (Vicia faba L.) Hereditas 140:222–225

    Article  PubMed  Google Scholar 

  • Trabanco N, Asensio-Manzanera MC, Pérez-Vega E, Ibeas A, Campa A, Ferreira JJ (2014) Identification of quantitative trait loci involved in the response of common bean to Pseudomonas syringae pv. phaseolicola. Mol Breed 33:577–588

    Article  CAS  Google Scholar 

  • van Dijk K, Ding Y, Malkaram S, Riethoven JJM, Liu R, Yang J, Laczko P, Chen H, Xia Y, Ladunga I, Avramova Z, Fromm M (2010) Dynamic changes in genome-wide histone H3 lysine 4 methylation patterns in response to dehydration stress in Arabidopsis thaliana. BMC Plant Biol 10:1–12

    Article  CAS  Google Scholar 

  • Vange T, Moses OE (2009) Studies on genetic characteristics of pigeon pea germplasm at Otobi, Benue state of Nigeria. WJAS 5:714–719

    Google Scholar 

  • Varshney RK (2014) Identification, introgression and fine mapping of a “QTL-Hotspot” for drought tolerance in chickpea. International plant and animal genome conference, paper 13706. Asia, Singapore. https://pag.confex.com/pag/asia2014/webprogram/Paper13706.html. Accessed 28 Feb 2015

  • Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR (2009) Orphan legume crops enter the genomics era! Curr Opin Plant Biol 12:202–210

    Article  PubMed  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM et al (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31:1120–1134

    Article  PubMed  Google Scholar 

  • Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.) Theor Appl Genet 127:445–462

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Kudapa H, Pazhamala L, Chitikineni A, Thudi M, Bohra A, Gaur PM, Janila P, Fikre A, Kimurto P, Ellis N (2015) Translational genomics in agriculture: some examples in grain legumes. Crit Rev Plant Sci 34:169–194

    Article  Google Scholar 

  • Verma P, Sharma TR, Srivastava PS, Abdin MZ, Bhatia S (2014a) Exploring genetic variability within lentil (Lens culinaris Medik.) and across related legumes using a newly developed set of microsatellite markers. Mol Biol Rep 41:5607–5625

  • Verma K, Saini R, Rani A (2014b) Recent advances in the regeneration and genetic transformation of soybean. J Innov Biol 1:15–26

  • Waltz E (2011) Industry exhales as USDA okays glyphosateresistant alfalfa. Nature Biotechnol 29:179–181

    Article  CAS  Google Scholar 

  • Wang Z, Huang W, Chang J, Sebastian A, Li Y, Li H, Wu X, Zhang B, Meng F, Li W (2014a) Overexpression of SiDGAT1, a gene encoding acyl-CoA: diacylglycerol acyltransferase from Sesamum indicum L. increases oil content in transgenic Arabidopsis and soybean. Plant Cell Tiss Organ Cult 119:399–410

  • Wang X, Jiang GL, Green M, Scott RA, Hyten DL, Cregan PB (2014b) Quantitative trait locus analysis of unsaturated fatty acids in a recombinant inbred population of soybean. Mol Breed 33:281–296

  • Weber RLM, Wiebke-Strohm B, Bredemeier C, Margis-Pinheiro M, Greigh de Brito G, Rechenmacher C, Bertagnolli PF, Lisei de Sá ME, de Araújo Campos M, Santos de Amorim RM, Beneventi MA, Margis R, Grossi-de-Sa MF, Bodanese-Zanettini MH (2014) Expression of an osmotin-like protein from Solanum nigrum confers drought tolerance in transgenic soybean. BMC Plant Biol. doi:10.1186/s12870-014-0343-y

    Google Scholar 

  • Wolt JD, Wang K, Yang B (2016) The regulatory status of genome-edited Crops. Plant Biotechnol J 14:510–518

    Article  CAS  PubMed  Google Scholar 

  • Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wang L, Li L, Wang S (2014) De novo assembly of the common bean transcriptome using short reads for the discovery of drought-responsive genes. PLoS ONE. doi:10.1371/journal.pone.0109262

    Google Scholar 

  • Xue RF, Wu J, Chen ML, Zhu ZD, Wang LF, Wang XM, Blair MW, Wang SM (2014) Cloning and characterization of a novel secretory root-expressed peroxidase gene from common bean (Phaseolus vulgaris L.) infected with Fusarium oxysporum f. sp. Phaseoli. Mol Breed 34:855–870

    Article  CAS  Google Scholar 

  • Yang SS, Tu ZJ, Cheung F, Xu WW, Lamb JFS, Jung HJG, Vance CP, Gronwald JW (2011) Using RNA-Seq for gene identification, polymorphism detection and transcript profiling in two alfalfa genotypes with divergent cell wall composition in stems. BMC Genom. doi:10.1186/1471-2164-12-199

    Google Scholar 

  • Yang W, Wang M, Yue A, Wu J, Li S, Li G, Dua W (2014) QTLs and epistasis for drought-tolerant physiological index in soybean (Glycine max L.) across different environments. Caryologia 67:72–78

    Article  Google Scholar 

  • Yang T, Fang L, Zhang X, Hu J, Bao S, Hao J, Hao J, Li L, He Y, Jiang J, Wang F, Tian S, Zong X (2015) High-throughput development of SSR markers from pea (Pisum sativum L.) based on next generation sequencing of a purified chinese commercial variety. PLoS ONE. doi:10.1371/journal.pone.0139775

    Google Scholar 

  • Yoshikawa Y, Chen P, Zhang B, Scaboo A, Orazaly M, Smith SF, Jaureguy LM (2014) Evaluation of natto soybean for agronomic and seed quality traits. J Crop Improv 29:40–52

    Article  Google Scholar 

  • Yu LX, Zheng P, Zhang T, Rodringuez J, Main D (2016) Genotyping-by-sequencing based genome-wide association studies on Verticillium wilt resistance in autotetraploid alfalfa (Medicago sativa L.) Mol Plant Pathol. doi:10.1111/mpp.12389

    Google Scholar 

  • Yuste-Lisbona FJ, González AM, Capel C, García-Alcázar M, Capel J, De Ron AM, Santalla M, Lozano R (2014a) Genetic variation underlying pod size and color traits of common bean depends on quantitative trait loci with epistatic effects. Mol Breed 33:939–952

  • Yuste-Lisbona FJ, González AM, Capel C, García-Alcázar M, Capel J, De Ron AM, Lozano R, Santalla M (2014b) Genetic analysis of single-locus and epistatic QTLs for seed traits in an adapted × nuña RIL population of common bean (Phaseolus vulgaris L.) Theor Appl Genet 127:897–912

  • Zhang RX, Gossen BD (2007) Heritability estimates and response to selection for resistance to mycosphaerella blight in pea. Crop Sci 47:2303–2307

    Article  Google Scholar 

  • Zhang J, Liang S, Duan J, Wang J, Chen S, Cheng Z, Zhang Q, Liang X, Li Y (2012) De novo assembly and characterization of the transcriptome during seed development, and generation of genic-SSR markers in Peanut (Arachis hypogaea L.) BMC Genom. doi:10.1186/1471-2164-13-90

    Google Scholar 

  • Zhang T, Yu LX, McCord P, Miller D, Bhamidimarri S, Johnson D, Monteros MJ, Ho J, Reisen P, Samac DA (2014a) Identification of molecular markers associated with verticillium wilt resistance in alfalfa (Medicago Sativa L.) using high-resolution melting. PLoS ONE. doi:10.1371/journal.pone.0115953

  • Zhang Y, Schernthaner J, Labbé N, Hefford MA, Zhao J, Simmonds DH (2014b) Improved protein quality in transgenic soybean expressing a de novo synthetic protein, MB-16. Transgenic Res 23:455–467

  • Zhang T, Yu LX, Zheng P, Li Y, Rivera M, Main D, Greene SL (2015a) Identification of loci associated with drought resistance traits in heterozygous autotetraploid alfalfa (Medicago sativa L.) using genome-wide association studies with genotyping by sequencing. PLoS ONE. doi:10.1371/journal.pone.0138931

  • Zhang YM, Zhang HM, Liu ZH, Guo XL, Li HC, Li GL, Jiang CZ, Zhang MC (2015b) Inhibition of isoflavone biosynthesis enhanced T-DNA delivery in soybean by improving plant–Agrobacterium tumefaciens interaction. Plant Cell Tiss Organ Cult 121:183–193

  • Zhou L, Liu Y, Liu Z, Kong D, Duan M, Luo L (2010) Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. J Exp Bot 61:4157–4168

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Innovation Fund for Competitiveness of the Region of O’Higgins, Chile, FIC-R-2014, code 30343832-0, involving the project “Innovation and transfer to improve the cultivation of legumes in the O’Higgins Region” (2014–2017), for funding. In addition, we are very grateful of Dr. Paul Gepts, a Professor in Plant Sciences and Geneticist/Breeder at the University of California in Davis, USA, for his constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés R. Schwember.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacob, C., Carrasco, B. & Schwember, A.R. Advances in breeding and biotechnology of legume crops. Plant Cell Tiss Organ Cult 127, 561–584 (2016). https://doi.org/10.1007/s11240-016-1106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1106-2

Keywords

Navigation