Skip to main content
Log in

Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

This study presents the development of an enhanced map in faba bean. The map contains 258 loci, mostly gene-based markers, organized in 16 linkage groups that expand 1,875 cM, with an average inter-marker distance of 7.26 cM. The combination of EST-derived markers with a number of markers physically located or previously ascribed to chromosomes by trisomic segregation, allowed the allocation of eight linkage groups (229 markers), to specific chromosomes. Moreover, this approach provided anchor points to establish a global homology among the faba bean chromosomes and those of closely-related legumes species. The map was used to identify and validate, for the first time, QTLs controlling five flowering and reproductive traits: days to flowering, flowering length, pod length, number of seeds per pod and number of ovules per pod. Twelve QTLs stable in the 2 years of evaluation were identified in chromosomes II, V and VI. Comparative mapping suggested the conservation of one of the faba bean genomic regions controlling the character days to flowering in other five legume species (Medicago, Lotus, pea, lupine, chickpea). Additional syntenic co-localizations of QTLs controlling pod length and number of seeds per pod between faba bean and Lotus japonicus are likely. The new genetic map opens the way for further translational studies between faba bean and related legume species, and provides an efficient tool for breeding applications such as QTL analysis and marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aryamanesh N, Nelson MN, Yan G, Clark HJ, Siddique KHM (2010) Mapping a major gene for growth habit and QTLs for ascochyta blight resistance and flowering time in a population between chickpea and Cicer reticulatum. Euphytica 173:307–319

    Article  Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet M, Petit A, Rameau C, Lejeune-Henaut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112(6):1024–1041

    Article  CAS  PubMed  Google Scholar 

  • Avila CM, Satovic Z, Sillero JC, Rubiales D, Moreno MT, Torres AM (2004) Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean. Theor Appl Genet 115:1075–1082

    Article  Google Scholar 

  • Avila CM, Satovic Z, Sillero JC, Nadal S, Rubiales D, Moreno MT, Torres AM (2005) QTL detection for agronomic traits in faba bean (Vicia faba). Agric Conspec SCI 70(3):65–73

    Google Scholar 

  • Bonzon M, Simon P, Agosti RD, Greppin H, Wagner E (1987) Activity of glyceraldehyde-3-phosphate dehydrogenase isozymes during photoperiodic floral induction in spinach leaves. Physiol Plantarum 70:577–582

    Article  CAS  Google Scholar 

  • Bourion V, Fouilloux G, Le Signor C, LeJeune-Henaut I (2002) Genetic studies of selection criteria for productive and stable peas. Euphytica 127:261–273

    Article  CAS  Google Scholar 

  • Cabrera A (1988) Inheritance of flower color in Vicia faba L. FABIS Newslett 22:2–7

    Google Scholar 

  • Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 104:1217–1228

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KFX, Rogers J, Quetier F, Oldroyd GE, Debelle F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103(40):14959–14964

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, May GD, Jackson SA (2009) Three sequenced legume genomes and many crop species: rich opportunities for translational genomics. Plant Physiol 151:970–977

    Article  CAS  PubMed  Google Scholar 

  • Choi HK, Kim DJ, Uhm T, Limpens E, Baek JM, Lim H, Kalo P, Penmetsa RV, Seres A, Kulikova O, Bisseling T, Kiss GB, Cook DR (2004) A sequence based genetic map of Medicago truncatula and comparison of marker colinearity with Medicago sativa. Genetics 166:1463–1502

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait loci affecting a quantitative character. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • Cobos MJ, Rubio J, Fernandez-Romero MD, Garza R, Moreno MT, Millan T, Gil J (2007) Genetic analysis of seed size, yield and days to flowering in a chickpea recombinant inbred line population derived from a Kabuli × Desi cross. Annu Appl Biol 151(1):33–42

    Article  CAS  Google Scholar 

  • Cobos MJ, Winter P, Kharrat M, Cubero JI, Gil J, Millan T, Rubio J (2009) Genetic analysis of agronomic traits in a wide cross of chickpea. Field Crop Res 111(1–2):130–136

    Article  Google Scholar 

  • Cogan NO, Ponting RC, Vecchies AC, Drayton MC, George J, Dracatos PM (2006) Gene-associated single nucleotide polymorphism discovery in perennial ryegrass (Lolium perenne L.). Mol Genet Genomics 276:101–112

    Article  CAS  PubMed  Google Scholar 

  • Cubero JI (1974) On the evolution of Vicia faba L. Theor Appl Genet 45:47–51

    Article  Google Scholar 

  • Cubero JI (1982) Interespecific hybridization in Vicia. In: Hawting G, Webb C (eds) Bean improvement: proceedings of the Faba Bean conference ICARDA/IFAD Nile Valley Project. Martinus Nihjoff, The Hague, pp 91–108

    Google Scholar 

  • Darvasi A, Soller M (1997) A simple method to calculate resolving power and confidence interval of QTL map location. Behav Genet 27(2):125–132

    Article  CAS  PubMed  Google Scholar 

  • De Mita S, Chantret N, Loridon K, Ronfort J, Bataillon T (2011) Molecular adaptation in flowering and symbiotic recognition pathways: insights from patterns of polymorphism in the legume Medicago truncatula. BMC Evol Biol 11:229

    Article  PubMed  Google Scholar 

  • Deng Z, Huang S, Ling P, Chen C, Yu C, Weber CA, Moore GA, Gmiter FGJ (2000) Clonning and characterization of NBS-LRR class resistance-gene candidate sequences in citrus. Theor Appl Genet 101:814–822

    Article  CAS  Google Scholar 

  • Diaz RR, Torres AM, Satovic Z, Gutierrez MV, Cubero JI, Roman B (2010) Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations. Theor Appl Genet 120:909–919

    Article  Google Scholar 

  • Diaz-Ruiz R, Satovic Z, Avila CM, Alfaro CM, Gutierrez MV, Torres AM, Roman B (2009) Confirmation of QTLs controlling Ascochyta fabae resistance in different generations of faba bean (Vicia faba L.). Crop Pasture Sci 60:353–361

    Article  CAS  Google Scholar 

  • Doerge RW, Churchill GA (1996) Permutations test for multiple loci affecting a quantitative character. Genetics 142:285–294

    CAS  PubMed  Google Scholar 

  • Ehrenreich IM, Hanzawa Y, Chou L, Roe JL, Kover PX, Purugganan MD (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics 183(1):325–335

    Article  CAS  PubMed  Google Scholar 

  • Ellwood SR, Phan HTT, Jordan M, Torres AM, Avila CM, Cruz-Izquierdo S, Oliver RP (2008) Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics 9:380

    Article  PubMed  Google Scholar 

  • FAOSTAT (2009) FAO statistical year book. Agricultural production. April 2009 on line: http://www.fao.org

  • Fratini RY, Durán P, Garcia, Perez de la Vega M (2007) Identification of quantitative trait loci (QTL) for plant structure, growth habit and yield in lentil. Span J Agric Res 5(3):348–356

  • Fuchs J, Schubert I (1995) Localization of seed protein genes on metaphase chromosomes of Vicia faba via fluorescence in situ hybridization. Chromosom Res 3:94–100

    Article  CAS  Google Scholar 

  • Gladstones JS (1967) Selection for economic characters in Lupinus angustifolius and L. digitatus. 1. Non-shattering pods. Aust J Exp Agric Anim Husb 7:360–366

    Article  Google Scholar 

  • Glémin S, Bataillon T (2009) A comparative view of the evolution of grasses under domestication. New Phytol 183:273–290

    Article  PubMed  Google Scholar 

  • Gondo T, Sato S, Okumura K, Tabata S, Akashi R, Isobe S (2007) Quantitative traits locus analysis of multiple agronomic traits in the model legume Lotus japonicus. Genome 50(7):627–637

    Article  PubMed  Google Scholar 

  • Gonzalez JA, Martin A (1983) Development, use and handling of trisomics in Vicia faba L. FABIS Newslett 6:10–11

    Google Scholar 

  • Gottlieb LD (1973) Enzyme differentiation and phylogeny in Clarkia franciscana. C. rubicunda C. amoena Evol 27:205–214

    Google Scholar 

  • Greilhuber J (1975) Heterogenetity of heterochromatin in plants: comparison of Hy- and C-bands in Vicia faba. Plant Syst Evol 124:139–156

    Article  Google Scholar 

  • Gumber RK, Sarvjeet S (1996) Genetics of flowering time in chickpea: a preliminary report. Crop Improv 23:295–296

    Google Scholar 

  • Gutierrez MV, Vaz Patto MC, Huguet T, Cubero JI, Moreno MT, Torres AM (2005) Cross-species amplification of Medicago truncatula microsatellites across three major pulse crops. Theor Appl Genet 110:1210–1217

    Google Scholar 

  • Hecht V, Laurie RE, Vander Schoor JK, Ridge S, Knowles CL, Liew LC, Sussmilch FC, Murfet IC, Macknight RC, Weller JL (2011) The pea GIGAS gene is a FLOWERING LOCUS T homolog necessary for graft-transmissible specification of flowering but not for responsiveness to photoperiod. Plant Cell 23:147–161

    Google Scholar 

  • Izawa T (2007) Adaptation of flowering-time by natural and artificial selection in Arabidopsis and rice. J Exp Bot 58:3091–3097

    Article  CAS  PubMed  Google Scholar 

  • Julier B, Huguet T, Chardon F, Ayadi R, Pierre JB, Prosperi JM, Barre P, Huyghe C (2007) Identification of quantitative trait loci influencing aerial morphogenesis in the model legume Medicago truncatula. Theor Appl Genet 114:1391–1406

    Article  PubMed  Google Scholar 

  • Jung C, Müller AE (2009) Flowering time control and applications in plant breeding. Trends Plant Sci 14:563–573

    Article  CAS  PubMed  Google Scholar 

  • Kalo P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis TH, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272:235–246

    Article  CAS  PubMed  Google Scholar 

  • Kalo P, Choi HK, Ellis N, Kiss GB (2011) Synteny and comparative genomics between model and cool season grain legumes. In: Kole C (series ed), Pérez de la Vega M, Torres AM, Cubero JI, Kole C (eds) Genetics, Genomics and breeding in crop plants: cool season food legumes, Science Pubs Inc, New Hampshire, pp 285–302

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kumar J, Choudhari AK, Solanki RK, Pratap A (2011) Towards marker-assisted selection in pulses: a review. Plant Breed 130:297–313

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincon SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Fujita T, Yan Z-H, Sakamoto S, Xu D, Abe J (2007) QTL mapping of domestication-related traits in soybean (Glycine max). Ann Bot 100:1027–1038

    Article  CAS  PubMed  Google Scholar 

  • Macas J, Dolezel J, Lucretti S, Pich U, Meister A, Fuchs J, Schubert I (1993) Localization of seed genes on flow-sorted field bean chromosomes. Chromosome Res 1:107–115

    Article  CAS  PubMed  Google Scholar 

  • Maloof JN (2010) Recent advances in regulation of flowering. F1000 Biol Rep 2:9 Millan T, Clarke HJ, Siddique KHM, Buhariwalla HK, Gaur PM Kumar J, Gil J, Kahl G, Winter P (2006) Chickpea molecular breeding: new tools and concepts. Euphytica 147:81–103

    Google Scholar 

  • Millan T, Clarke HJ, Siddique KHM, Buhariwalla HK, Gaur PM, Kumar J, Gil J, Kahl G, Winter P (2006) Chickpea molecular breeding: new tools and concepts. Euphytica 147(1–2):81–103

    Google Scholar 

  • Millan T, Winter P, Jüngling R, Gil J, Rubio J, Cho S, Cobos MJ, Iruela M, Rajesh PN, Tekeoglu M, Kahl G, Muehlbauer FJ (2010) A consensus genetic map of chickpea (Cicer arietinum L.) based on 10 mapping populations. Euphytica 175:175–189

    Article  CAS  Google Scholar 

  • Mudge J, Cannon S, Kalo P, Oldroyd G, Roe B, Town C, Young N (2005) Highly syntenic regions in the genomes of soybean, Medicago truncatula and Arabidopsis thaliana. BMC Plant Biol 5(1):15

    Article  PubMed  Google Scholar 

  • Nayak SN, Zhu H, Varghese N, Datta S, Choi HK, Horres R, Jüngling R, Singh J, Kishor PBK, Sivaramakrishnan S, Hoisington DA, Kahl G, Winter P, Cook DR, Varshney RK (2010) Integration of novel SSR and gene-based SNP marker loci in the chickpea genetic map and establishment of new anchor points with Medicago truncatula genome. Theor Appl Genet 120:1415–1441

    Article  CAS  PubMed  Google Scholar 

  • Nelson M, Phan H, Ellwood S, Moolhuijzen P, Hane J, Williams A, O’Lone C, Fosu-Nyarko J, Scobie M, Cakir M, Jones M, Bellgard M, Ksiazkiewicz M, Wolko B, Barker S, Oliver R, Cowling W (2006) The first gene-based map of Lupinus angustifolius L. Location of domestication genes and conserved synteny with Medicago truncatula. Theor Appl Genet 113(2):225–238

    Article  CAS  PubMed  Google Scholar 

  • Nelson MN, Moolhuijzen PM, Boersma JG, Chudy M, Lesniewska K, Bellgard M, Oliver RP, Święcicki W, Wolko B, Cowling WA, Ellwood SR (2010) Aligning a dense genetic map of Lupinus angustifolius with the genome sequence of the model legume, Lotus japonicus. DNA Res 17(2):73–83

    Article  CAS  PubMed  Google Scholar 

  • Orr AR (1987) Changes in glyceraldehyde 3-phosphate dehydrogenase activity in shoot apical meristems of Brassica campestris during transition to flowering. Am J Bot 74(8):1161–1166

    Article  CAS  Google Scholar 

  • Palomino C, Satovic Z, Cubero JI, Torres AM (2006) Identification and characterization of NBS-LRR class resistance gene analogs in faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.). Genome 59:1227–1237

    Google Scholar 

  • Palomino C, Fernández-Romero MD, Rubio J, Torres A, Moreno MT, Millan T (2009) Integration of new CAPS and dCAPS-RGA markers into a composite chickpea genetic map and their association with disease resistance. Theor Appl Genet 118:671–682

    Article  CAS  PubMed  Google Scholar 

  • Phan HTT, Ellwood SR, Ford R, Thomas S, Oliver RP (2006) Differences in syntenic complexity between Medicago truncatula with Lens culinaris and Lupinus albus. Funct Plant Biol 33(8):775–782

    Article  CAS  Google Scholar 

  • Phan HTT, Ellwood SR, Adhikari K, Nelson MN, Oliver RP (2007) The first genetic and comparative map of white lupin (Lupinus albus L.): identification of QTLs for anthracnose resistance and flowering time, and a locus for alkaloid content. DNA Res 14:59–70

    Article  CAS  PubMed  Google Scholar 

  • Picard J (1979) Some reflections on problems and prospects in Vicia faba breeding. In: some current research on Vicia faba in Western Europe, Bruselas, pp 23–33

  • Pierre JB, Huguet T, Barre P, Huyghe C, Julier B (2008) Detection of QTLs for flowering date in three mapping populations of the model legume species Medicago truncatula. Theor Appl Genet 117(4):609–620

    Article  CAS  PubMed  Google Scholar 

  • Pompanon F, Bonin A, Bellemain E, Taberlet P (2005) Genotyping errors: causes, consequences and solutions. Nat Rev Genet 6:847–859

    Article  CAS  PubMed  Google Scholar 

  • Pozarkova D, Koblizkova A, Roman B, Torres AM, Lucretti S, Lysak M, Dolezel J, Macas J (2002) Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol Plantarum 45:337–345

    Article  CAS  Google Scholar 

  • Roman B, Torres A, Rubiales D, Cubero JI, Satovic Z (2002) Mapping of quantitative trait loci controlling broomrape (Orobanche crenata Forsk) resistance in faba bean (Vicia faba L.). Genome 45:1057–1063

    Article  CAS  PubMed  Google Scholar 

  • Roman B, Satovic Z, Avila CM, Rubiales D, Moreno MT, Torres AM (2003) Locating genes associated with Ascochyta fabae resistance in Vicia faba L. Aust J Agric Res 54:85–90

    Article  CAS  Google Scholar 

  • Roman B, Satovic Z, Pozarkova D, Macas J, Dolezel J, Cubero JI, Torres AM (2004) Development of a composite map in Vicia faba, breeding applications and future prospects. Theor Appl Genet 108:1079–1088

    Article  CAS  PubMed  Google Scholar 

  • Sarker A, Erskine W, Sharma B, Tyagi MC (1999) Inheritance and linkage relationship of days to flowering and morphological loci in lentil (Lens culinaris Medik.). J Hered 90(2):270–275

    Article  Google Scholar 

  • Satovic Z, Torres AM, Cubero JI (1996) Genetic mapping of new morphological, isozyme and RAPD markers in Vicia faba L. using trisomics. Theor Appl Genet 93:1130–1138

    Article  CAS  Google Scholar 

  • Seres A, Deák G, Iliescu C, Tóth G, Kaló P, Ellis NHT, Kiss GB (2007) Development and testing of cross species gene-based markers in chickpea, lens, lupine, pea, faba bean and clover and comparison of the homologous loci in pea and Medicago truncatula. In: proceedings of 6th European Conference Grain Legumes. Integrating Legume Biology for Sustainable Agriculture, Lisboa, p 13

  • Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119

    Article  CAS  Google Scholar 

  • Sjödin J (1971) Induced morphological variation in Vicia faba L. Hereditas 67:155–180

    Article  Google Scholar 

  • Stoddard FL, Hovinen S, Kontturi M, Lindström K, Nykänen N (2009) Legumes in Finnish agriculture: history, present status and future prospects. Agric Food Sci 18:191–205

    Article  Google Scholar 

  • Stracke S, Sato S, Sandal N, Koyama M, Kaneko T, Tabata S, Parniske M (2004) Exploitation of colinear relationships between the genomes of Lotus japonicus, Pisum sativum and Arabidopsis thaliana, for positional cloning of a legume symbiosis gene. Theor Appl Genet 108(3):442–449

    Article  CAS  PubMed  Google Scholar 

  • Tar’an B, Michaels TE, Pauls KP (2002) Genetic mapping of agronomic traits in common bean. Crop Sci 42:544–556

    Article  Google Scholar 

  • Torres AM, Weeden NF, Martín A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85:937–945

    Article  CAS  Google Scholar 

  • Torres AM, Satovic Z, Cánovas J, Cobos S, Cubero JI (1995) Genetics and mapping of new isozyme loci in Vicia faba L. using trisomics. Theor Appl Genet 91:783–789

    Article  CAS  Google Scholar 

  • Torres AM, Vaz Patto MC, Satovic Z, Cubero JI (1998) New isozyme loci in faba bean (Vicia faba L.): genetic analysis and mapping using trisomics. J Hered 89:271–274

    Google Scholar 

  • Torres AM, Roman B, Avila CM, Satovic Z, Rubiales D, Sillero JC, Cubero JI, Moreno MT (2006) Faba bean breeding for resistance against biotic stresses: towards applications of marker technology. Euphytica 147:67–80

    Article  Google Scholar 

  • Torres AM, Avila CM, Gutierrez N, Palomino C, Moreno MT, Cubero JI (2010) Marker-assisted selection in faba bean (Vicia faba L.). Field Crops Res 115:243–252

    Article  Google Scholar 

  • Vaz Patto MC, Torres AM, Koblizkova A, Macas J, Cubero JI (1999) Development of a genetic composite map of Vicia faba using F2 populations derived from trisomics plants. Theor Appl Genet 98:736–743

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh. (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm)

  • Weeden NF, Muelhlbauer FJ, Ladizinsky G (1992) Extensive conservation of linkage relationships between pea and lentil genetic maps. J Hered 83:123–129

    Google Scholar 

  • Weller JL, Hecht V, Liew LC, Sussmilch FC, Wenden B, Knowles CL, Vander Schoor JK (2009) Update on the genetic control of flowering in garden pea. J Exp Bot 60(9):2493–2499

    Google Scholar 

  • Wendel JF, Weeden NF (1990) Visualization and interpretation of plant isozymes. In: Soltis DE, Soltis PS (eds) Isozymes in plant biology. Discorides Press, Portland, pp 5–45

    Google Scholar 

  • Young ND, Udvardi M (2009) Translating Medicago truncatula genomics to crop legumes. Curr Opin Plant Biol 12(2):193–201

    Article  CAS  PubMed  Google Scholar 

  • Zeng ZB, Kao CH, Basten CJ (1999) Estimating the genetic architecture of quantitative traits. Genetics 74:279–289

    Article  CAS  Google Scholar 

  • Zhu H, Choi H, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Serafín Cruz-Izquierdo acknowledges the Consejo Nacional de Ciencia y Tecnología (CONACyT-México), Colegio de Postgraduados (CP-México) and Fundación Carolina (FC-España) for the fellowship at University of Córdoba (2005–2009). This research was developed at the Instituto de Investigación y Formación Agraria y Pesquera (IFAPA) Córdoba, Spain belonging to the Campus de Excelencia Internacional Agroalimentario (ceiA3) and supported by the Spanish Ministerio de Ciencia e Innovación (MICINN) projects RTA-2007-00030, AGL-2008-02305 and RTA2010-00059, co-financed with FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Torres.

Additional information

Communicated by G. Bryan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz-Izquierdo, S., Avila, C.M., Satovic, Z. et al. Comparative genomics to bridge Vicia faba with model and closely-related legume species: stability of QTLs for flowering and yield-related traits. Theor Appl Genet 125, 1767–1782 (2012). https://doi.org/10.1007/s00122-012-1952-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1952-1

Keywords

Navigation