Skip to main content

Advertisement

Log in

Identification and characterization of drought stress responsive genes in faba bean (Vicia faba L.) by suppression subtractive hybridization

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Faba bean (Vicia faba L.) ranks fourth in food legume crop production in the world. However, drought is a potential major constraint to faba bean production and improved faba bean cultivars and development of drought-resistant varieties play a key role in enhancing faba bean crop production. In this study, suppression subtractive hybridization (SSH) technique was used to study differential expression in response to water stress and to identify genes involved in molecular mechanism of drought tolerance. A forward subtractive cDNA library induced by water deficit conditions was constructed used Hara faba bean cultivar grown in pots and treated with either well-watered (WW) or water-stressed (WS). A total of 28 clones were identified as drought stress induced. After sequencing, ten unique expressed sequence tags (ESTs) were obtained by clustering and blast analysis which showed homology to known drought responsive genes including heat shock protein (HSP), late embryogenic abundant (LEA), zinc finger protein transcription factors (ZFP), lipid transfer protein (LTP), chlorophyll a/b-binding protein (ChlBP), thioredoxin h (Trx h), and ATP synthase as well as some functionally unknown transcripts. Their expression was characterized in Leaf, root, flower, cotyledon, and stem tissue. Quantitative RT-PCR analysis revealed that eight genes were consistently up-regulated in Hara compared to Giza3 cultivar, known as drought-tolerant and sensitive respectively under water deficit treatment. The expression of six genes was differentially expressed in different stages of water stress faba bean plant. Drought responsive genes showed changed expression patterns, indicating that they may play important roles in faba bean water stress response. Furthermore, these results indicate that drought-induced genes are related to metabolic pathways and genetic regulation of stress and development and can serve as a foundation for future studies to elucidate drought stress mechanisms of faba bean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdellatif KF, El Absawy ESA, Zakaria AM (2012) Drought stress tolerance of faba bean as studied by morphological traits and seed storage protein pattern. J Plant Stud 1:47–54

    Article  Google Scholar 

  • Arun M, Subramanyam K, Theboral J, Ganapathi A, Manickavasagam M (2014) Optimized shoot regeneration for Indian soybean: the influence of exogenous polyamines. Plant Cell Tissue Organ Cult 117:305–309

    Article  CAS  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Battaglia M, Covarrubias AA (2013) Late Embryogenesis Abundant (LEA) proteins in legumes. Front Plant Sci 4:1–11

    Article  Google Scholar 

  • Bhargava A, Clabaugh I, To JP, Maxwell BB, Chiang YH, Schaller GE, Loraine A, Kieber JJ (2013) Identification of cytokinin-responsive genes using microarray meta-analysis and RNA-Seq in Arabidopsis. Plant Physiol 162:272–294

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Broin M, Cuine S, Peltier G, Rey P (2000) Involvement of CDSP 32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Lett 467:245–248

    Article  CAS  PubMed  Google Scholar 

  • Budak H, Akpinar BA, Unver T, Turktas M (2013) Proteome changes in wild and modern wheat leaves upon drought stress by two-dimensional electrophoresis and nanoLC-ESI-MS/MS. Plant Mol Biol 83:89–103

    Article  CAS  PubMed  Google Scholar 

  • Cazalis R, Pulido P, Aussenac T, Pérez-Ruiz JM, Cejudo FJ (2006) Cloning and characterization of three thioredoxin h isoforms from wheat showing differential expression in seeds. J Exp Bot 57:2165–2172

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report 11:113–116

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen M, Wang QW, Cheng XG, Xu ZS, Li LC, Xia LQ, Ma YZ (2006) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 32:924–936

    Google Scholar 

  • Cheng MC, Liao PM, Kuo WW, Lin TP (2013a) The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiol 162:1566–1582

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng CK, Au CH, Wilke SK, Stajich JE, Zolan ME, Pukkila PJ, Kwan HS (2013b) 5′-Serial Analysis of Gene Expression studies reveal a transcriptomic switch during fruiting body development in Coprinopsis cinerea. BMC Genom 14:195–211

    Article  CAS  Google Scholar 

  • Cho EK, Hong CB (2006) Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Rep 25:349–358

    Article  CAS  PubMed  Google Scholar 

  • Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species. Plant Signal Behav 3:156–165

    Article  PubMed Central  PubMed  Google Scholar 

  • Diatchenko L, Lukyanov S, Siebert PD (1999) Suppression subtractive hybridization: a versatile method for identifying differentially expressed genes. Methods Enzymol 303:349–380

    Article  CAS  PubMed  Google Scholar 

  • Downs CA, Heckathorn SA (1998) The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett 430:246–250

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2012) http://faostat.fao.org/default.aspx

  • Federico ML, Kaeppler HF, Skadsen RW (2005) The complex developmental expression of a novel stress-responsive barley Ltp gene is determined by a shortened promoter sequence. Plant Mol Biol 57:35–51

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Bai S, Li Q, Gao C, Liu G, Li G, Tan F (2013) Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × Populus nigra). PLoS One 8:1–7

    Google Scholar 

  • Garg B, Puranik S, Misra S, Tripathi BN, Prasad M (2013) Transcript profiling identifies novel transcripts with unknown functions as primary response components to osmotic stress in wheat (Triticum aestivum L.). Plant Cell Tissue Organ Cult 113:91–101

    Article  CAS  Google Scholar 

  • Gholami H, Farhadi R, Rahimi M, Zeinalikharaji A, Askari A (2013) Effect of growth hormones on physiology characteristics and essential oil of basil under drought stress condition. J Am Sci 9:61–63

    Google Scholar 

  • Gnanasambandam A, Paull J, Torres A, Kaur S, Leonforte T, Li H, Zong H, Yang T, Materne M (2012) Impact of molecular technologies on faba bean (Vicia faba L.) breeding strategies. Agronomy 2:132–166

    Article  Google Scholar 

  • Gonorazky AG, Regente MC, de la Canal L (2005) Stress induction and antimicrobial properties of a lipid transfer protein in germinating sunflower seeds. J Plant Physiol 162:618–624

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Bharalee R, Bhorali P, Das SK, Bhagawati P, Bandyopadhyay T, Gohain B, Agarwal N, Ahmed P, Borchetia S, Kalita MC, Handique AK, Das S (2013) Molecular analysis of drought tolerance in tea by cDNA-AFLP based transcript profiling. Mol Biotechnol 53:237–248

    Article  CAS  PubMed  Google Scholar 

  • Himmelbach A, Yang Y, Grill E (2003) Relay and control of abscisic acid signaling. Curr Opin Plant Biol 6:470–479

    Article  CAS  PubMed  Google Scholar 

  • International Board for Plant Genetic Resources (IBPGR) (1985) Faba bean descriptors. IBPGR, Rome (31 pp)

  • Jung HW, Kim KD, Hwang BK (2005) Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta 221:361–373

    Article  CAS  PubMed  Google Scholar 

  • Kharrat M, Ouchari H (2011) Faba bean status and prospects in Tunisia. Grain Legumes 56:11–12

    Google Scholar 

  • Kharrat M, Le Guen J, Tivoli B (2006) Genetics of resistance to 3 isolates of Ascochyta fabae on faba bean (Vicia faba L.) in controlled conditions. Euphytica 151:49–61

    Article  CAS  Google Scholar 

  • Khodadadi M (2013) Effect of drought stress on yield and water relative content in chickpea. Int J Agron Plant Prod 6:1168–1172

    Google Scholar 

  • Kudo K, Oi T, Uno Y (2014) Functional characterization and expression profiling of a DREB2-type gene from lettuce (Lactuca sativa L.). Plant Cell Tissue Organ Cult 116:97–109

    Article  CAS  Google Scholar 

  • Lee MY, Shin KH, Kim YK, Suh JY, Gu YY, Kim MR, Hur YS, Son O, Kim JS, Song E, Lee MS, Nam KH, Hwang KH, Sung MK, Kim HJ, Chun JY, Park M, Ahn TI, Hong CB, Lee SH, Park HJ, Park JS, Verma DP, Cheon CI (2005) Induction of thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots. Plant Physiol 139:1881–1889

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lindemose S, O’Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:5842–5878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Link W, Abdelmula AA, von Kittlitz E, Bruns S, Riemer H, Stelling D (1999) Genotypic variation for drought tolerance in Vicia faba. Plant Breed 118:477–483

    Article  Google Scholar 

  • Liu QL, Xu KD, Zhong M, Pan YZ, Jiang BB, Liu GL, Jia Y, Zhang HQ (2013a) Overexpression of a novel chrysanthemum Cys2/His2-type zinc finger protein gene DgZFP3 confers drought tolerance in tobacco. Biotechnol Lett 35:1953–1959

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Ji X, Zheng L, Nie X, Wang Y (2013b) Microarray analysis of transcriptional responses to abscisic acid and salt stress in Arabidopsis thaliana. Int J Mol Sci 14:9979–9998

    Article  PubMed Central  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo M, Liu J, Lee RD, Scully BT, Guo B (2010) Monitoring the expression of maize genes in developing kernels under drought stress using oligo-microarray. J Integr Plant Biol 52:1059–1074

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Fan Z, Shen Y, Li X, Chang H, Huang Q, Liu L (2013) Construction and analysis of SSH-cDNA library from leaves of susceptible rubber clone resistant to powdery mildew induced by BTH. Am J Plant Sci 4:528–534

    Article  Google Scholar 

  • Marcińska I, Czyczyło-Mysza I, Skrzypek E, Grzesiak MT, Janowiak F, Filek M, Dziurka M, Dziurka K, Waligórski P, Juzoń K, Cyganek K, Grzesiak S (2013) Alleviation of osmotic stress effects by exogenous application of salicylic or abscisic acid on wheat seedlings. Int J Mol Sci 14:13171–13193

    Article  PubMed Central  PubMed  Google Scholar 

  • Mulualem T, Dessalegn T, Dessalegn Y (2012) Participatory varietal selection of faba bean (Vicia faba L.) for yield and yield components in Dabat district, Ethiopia. Wudpecker J Agric Res 7:270–274

    Google Scholar 

  • Mwanamwenge J, Loss SP, Siddique KHM, Cocks PS (1999) Effect of water stress during floral initiation, flowering and podding on the growth and yield of faba bean. Eur J Agron 4:273–293

    Google Scholar 

  • Nakai Y, Nakahira Y, Sumida H, Takebayashi K, Nagasawa Y, Yamasaki K, Akiyama M, Ohme-Takagi M, Fujiwara S, Shiina T, Mitsuda N, Fukusaki E, Kubo Y, Sato MH (2013) Vascular plant one-zinc-finger protein 1/2 transcription factors regulate abiotic and biotic stress responses in Arabidopsis. Plant J 73:761–775

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TX, Sticklen M (2013) Barley HVA1 gene confers drought and salt tolerance in transgenic maize (Zea mays L.). Adv Crop Sci Technol 1:1–8

    Google Scholar 

  • Okamoto M, Petersonc FC, Defriesa A, Parka SY, Endod A, Nambarad E, Volkmanc BF, Cutlera SR (2013) Activation of dimeric ABA receptors elicits guard cell closure, ABA-regulated gene expression, and drought tolerance. Proc Natl Acad Sci 1:1–6

    Google Scholar 

  • Onemli F, Gucer T (2010) Response to drought of some wild species of Helianthus at seedling growth stage. HELIA 33:45–54

    Article  Google Scholar 

  • Pareek CS, Michno J, Smoczynski R, Tyburski J, Gołębiewski M, Piechocki K, Średzińska M, Pierzchała M, Czarnik U, Ponsuksili S, Wimmers K (2013) Identification of predicted genes expressed differentially in pituitary gland tissue of young growing bulls revealed by cDNA-AFLP technique. Czech J Anim Sci 58:147–158

    Article  CAS  Google Scholar 

  • Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021

    Article  PubMed Central  PubMed  Google Scholar 

  • Rahman MM, Kim Y, Byeon YE, Ryu HH, Kim WH, Rayhan MU, Kweon OK (2013) Identification of differentially expressed genes in gauze-exposed omentum of dogs using differential display RT-PCR. J Vet Sci 14:167–173

    Article  PubMed Central  PubMed  Google Scholar 

  • Reinartz J, Bruyns E, Lin JZ, Burcham T, Brenner S, Bowen B, Kramer M, Woychik R (2002) Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomics 1:95–104

    Article  CAS  Google Scholar 

  • Rejili M, Jaballah S, Ferchichi A (2008) Understanding physiological mechanism of Lotus creticus plasticity under abiotic stress and in arid climate: a review. Lotus Newsl 38:20–36

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sahoo KK, Tripathi AK, Pareek A, Singla-Pareek SL (2013) Taming drought stress in rice through genetic engineering of transcription factors and protein kinases. Plant Stress 7:60–72

    Google Scholar 

  • Sapeta H, Costa JM, Lourenço T, Maroco J, Lindee PVD, Oliveiraa MM (2013) Drought stress response in Jatropha curcas: growth and physiology. Environ Exp Bot 85:76–84

    Article  CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Serrato AJ, Cejudo FJ (2003) Type-h thioredoxins accumulate in the nucleus of developing wheat seed tissues suffering oxidative stress. Planta 217:392–399

    Article  CAS  PubMed  Google Scholar 

  • Shan X, Li Y, Jiang Y, Jiang Z, Hao W, Yuan Y (2013) Transcriptome profile analysis of maize seedlings in response to high-salinity, drought and cold stresses by deep sequencing. Plant Mol Biol Report 31:1485–1491

    Article  CAS  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Soni P, Mohapatra T, Bhatt KV, Singh G, Rizwan M, Sharma R (2013) Cloning of drought related genes in Vigna aconitifolia through modified differential display. J Cell Tissue Res 13:3701–3709

    CAS  Google Scholar 

  • Tozzi ES, Easlon HM, Richards JH (2013) Interactive effects of water, light and heat stress on photosynthesis in Fremont cottonwood. Plant Cell Environ 36:1423–1434

    Article  CAS  PubMed  Google Scholar 

  • Tripathi L, Singh AK, Singh S, Singh R, Chaudhary S, Sanyal I, Amla DV (2013) Optimization of regeneration andAgrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult 113:513–527

    Article  CAS  Google Scholar 

  • Van Houtte H, Vandesteene L, López-Galvis L, Lemmens L, Kissel E, Carpentier S, Feil R, Avonce N, Beeckman T, Lunn JE, Van Dijck P (2013) Overexpression of the trehalase gene AtTRE1 leads to increased drought stress tolerance in Arabidopsis and is involved in abscisic acid-induced stomatal closure. Plant Physiol 161:1158–1171

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang W, Vinocur B, Shoseyov O, Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci 9:244–252

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Yang C, Gao C, Wang Y (2009) Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses. Tree Physiol 29:1607–1619

    Article  PubMed  Google Scholar 

  • Xia Y, Ning Z, Bai G, Li R, Yan G, Siddique KHM, Baum M, Guo P (2012) Allelic variations of a light harvesting chlorophyll A/B binding protein gene (Lhcb1) associated with agronomic traits in barley. PLoS One 7:1–9

    Google Scholar 

  • Xiao B, Huang Y, Tang N, Xiong L (2007) Over-expression of a LEA gene in rice improves drought resistance under the Weld conditions. Theor Appl Genet 115:35–46

    Article  CAS  PubMed  Google Scholar 

  • Xu DQ, Huang J, Guo SQ, Yang X, Bao YM (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett 582:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Xu YH, Liu R, Yan L, Liu ZQ, Jiang SC, Shen YY, Wang XF, Zhang DP (2012) Light-harvesting chlorophyll a/b-binding proteins are required for stomatal response to abscisic acid in Arabidopsis. J Exp Bot 63:1095–1106

    Article  PubMed Central  PubMed  Google Scholar 

  • Yao LM, Wang B, Cheng LJ, Wu TL (2013) Identification of key drought stress-related genes in the hyacinth bean. PLoS One 8:1–11

    Article  Google Scholar 

  • Zhang H, Ni L, Liu Y, Wang Y, Zhang A, Tan M, Jiang M (2012a) The C2H2-type zinc finger protein ZFP182 is involved in abscisic acid-induced antioxidant defense in rice. J Integr Plant Biol 54:500–510

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yu S, Zuo K, Luo L, Tang K (2012b) Identification of gene modules associated with drought response in rice by network-based analysis. PLoS One 7:1–12

    CAS  Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 1:57–72

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassen Abid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abid, G., Muhovski, Y., Mingeot, D. et al. Identification and characterization of drought stress responsive genes in faba bean (Vicia faba L.) by suppression subtractive hybridization. Plant Cell Tiss Organ Cult 121, 367–379 (2015). https://doi.org/10.1007/s11240-014-0707-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0707-x

Keywords

Navigation