Skip to main content
Log in

QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

QTL mapping in F 2 population [ V. luteola × V. marina subsp. oblonga ] revealed that the salt tolerance in V. marina subsp. oblonga is controlled by a single major QTL.

Abstract

The habitats of beach cowpea (Vigna marina) are sandy beaches in tropical and subtropical regions. As a species that grows closest to the sea, it has potential to be a gene source for breeding salt-tolerant crops. We reported here for the first time, quantitative trait loci (QTLs) mapping for salt tolerance in V. marina. A genetic linkage map was constructed from an F2 population of 120 plants derived from an interspecific cross between V. luteola and V. marina subsp. oblonga. The map comprised 150 SSR markers. The markers were clustered into 11 linkage groups spanning 777.6 cM in length with a mean distance between the adjacent markers of 5.59 cM. The F2:3 population was evaluated for salt tolerance under hydroponic conditions at the seedling and developmental stages. Segregation analysis indicated that salt tolerance in V. marina is controlled by a few genes. Multiple interval mapping consistently identified one major QTL which can explain about 50 % of phenotypic variance. The flanking markers may facilitate transfer of the salt tolerance allele from V. marina subsp. oblonga into related Vigna crops. The QTL for domestication-related traits from V. marina are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arraouadi S, Badri M, Abdelly C, Huguet T, Aoudi ME (2012) QTL mapping of physiological traits associated with salt tolerance in Medicago truncatula recombinant inbred lines. Genomics 99:118–125

    Article  CAS  PubMed  Google Scholar 

  • Ashraf MA, Foolad MR (2013) Crop breeding for salt tolerance in the era of molecular markers and marker-assisted selection. Plant Breed 132:10–20

    Article  Google Scholar 

  • Blair MW, Pedraza F, Buendia HF, Gaitán-Solís E, Beebe SE, Gepts P, Thome J (2003) Development of a genome-wide anchored microsatellite map of common bean (Phaseolus vulgaris L.). Theor Appl Genet 107:1362–1374

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    CAS  PubMed  Google Scholar 

  • FAO (2005) Global network on integrated soil management for sustainable use of salt-affected soils. FAO land and plant nutrition management service, Rome

    Google Scholar 

  • Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963

    Article  CAS  PubMed  Google Scholar 

  • Foolad MR (1999) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42:727–734

    Article  CAS  Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tissue Organ Cult 76:101–119

    Article  CAS  Google Scholar 

  • Gaitán-Solís E, Duque MC, Edwards KJ, Thome J (2002) Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Sci 42:2128–2136

    Article  Google Scholar 

  • Greenway H, Munns H (1980) Mechanisms of salt tolerance in non halophytes. Annu Rev Plant Physiol 31:149–190

    Article  CAS  Google Scholar 

  • Han O, Kaga A, Isemura T, Wang XW, Tomooka N, Vaughan DA (2005) A genetic linkage map for azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor Appl Genet 111:1288–1299

    Article  Google Scholar 

  • Isemura T, Kaga A, Konishi S, Ando T, Tomooka N, Han OK, Vaughan DA (2007) Genome dissection of traits related to domestication in azuki bean (Vigna angularis) and comparison with other warm-season legumes. Ann Bot 100:1053–1071

    Article  PubMed  Google Scholar 

  • Isemura T, Kaga A, Tomooka N, Shimizu T, Vaughan DA (2010) The genetics of domestication of rice bean, Vigna umbellata. Ann Bot 106:927–944

    Article  CAS  PubMed  Google Scholar 

  • Isemura I, Kaga A, Tabata S, Somta P, Srinives P, Shimizu T, Jo U, Vaughan DA, Tomooka N (2012) Construction of a genetic linkage map and genetic analysis of domestication related traits in mungbean (Vigna radiata). PLoS ONE 7(8):e41304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaga A, Vaughan DA, Tomooka N (2005) Molecular markers in Vigna improvement: understanding and using gene pools. In: Lorz H, Wanzel G (eds) Biotechnology in agriculture and forestry, vol 55., Molecular marker systemsBerlin, Springer, pp 171–187

    Google Scholar 

  • Kaga A, Isemura T, Tomooka N, Vaughan DA (2008) The genetics of domestication of the azuki bean (Vigna angularis). Genetics 178:1013–1036

    Article  CAS  PubMed  Google Scholar 

  • Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed  Google Scholar 

  • Kearsey MJ, Pooni HS (1996) The genetical analysis of quantitative traits. Chapman and Hall, London

    Book  Google Scholar 

  • Kongjaimun A, Kaga A, Tomooka N, Somta P, Shimizu T, Shu Y, Vaughan DA, Srinives P (2012a) An SSR-based linkage map of yardlong bean [Vigna unguiculata ssp. sesquipedalis (L.) Verc.] and QTL analysis of pod length. Genome 55:81–92

    Article  CAS  PubMed  Google Scholar 

  • Kongjaimun A, Kaga A, Tomooka N, Somta P, Vaughan DA, Srinives P (2012b) The genetics of domestication of yardlong bean [Vigna unguiculata (L.) Walp. ssp. unguiculata cv.-gr. sesquipedalis]. Ann Bot 109:1185–1200

    Article  CAS  PubMed  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lawn RJ, Cottrell A (1988) Wild mungbean and its relatives in Australia. Biologist 35:267–273

    Google Scholar 

  • Lee SH (2012) Toward completion of genome sequence of mungbean. In: Abstract book, VI International Conference on Legume Genetics and Genomics, 2–7 October 2012, Hyderabad, India

  • Lee GJ, Boerma HR, Villagarcia MR, Zhou X, Carter TE Jr, Li Z, Gibbs MO (2004) A major QTL conditioning salt tolerance in S-100 soybean and descendant cultivars. Theor Appl Genet 109:1610–1619

    Article  CAS  PubMed  Google Scholar 

  • Leonforte A, Sudheesh S, Cogan NOI, Salisbury PA, Nicolas ME, Materne M, Forster JW, Kaur S (2013) SNP marker discovery, linkage map construction and identification of QTLs for enhanced salinity tolerance in field pea (Pisum sativum L.). BMC Plant Biol 13:161. doi:10.1186/1471-2229-13-161

    Article  PubMed  Google Scholar 

  • Lewis G, Schrire B, Mackinder B, Lock M (2005) Legumes of the world. Kew, Royal Botanic Gardens

    Google Scholar 

  • Li CD, Fatokun CA, Ubi B, Singh BB, Scoles GJ (2001) Determining genetic similarities and relationships among cowpea breeding lines and cultivars by microsatellite markers. Crop Sci 41:189–197

    Article  CAS  Google Scholar 

  • Lobato AKS, Santos Filho BG, Costa RCL, Goncalva-Vidigal MC, Moraes EC, Oliveira Neto CF, Rodriges VLF, Cruz FJR, Ferreira AS, Pita JD, Barreto AGT (2009) Morphological, physiological and biochemical responses during germination of the cowpea (Vigna unguiculata cv. Pitiuba) seeds under salt stress. World J Agric Sci 5:590–596

    CAS  Google Scholar 

  • Lodhi MA, Ye GN, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seedling stage in barley (Hordeum vulgare L.). Euphytica 94:263–272

    Article  Google Scholar 

  • Maréchal R, Mascherpa JM, Stainer F (1978) Extude taxonomique d’un groupe d’espèces des genres Phaseolus et Vigna (V. unguiculata) sur la base de données morphologiques et polliniques, traitées pour l’analyse informatique. Boissiera 28:160–272

    Google Scholar 

  • Mehra KL, Ibrahim AH (1989) Genetic resources in the Maldives. FAO/IBPGR Plant Genet Resour Newsl 75(76):42–43

    Google Scholar 

  • Padulosi S, Ng NQ (1993) A useful and unexploited herb, Vigna marina (Leguminosae-Papilionideae) and the taxonomic revision of its genetic diversity. Bull Jard Bot Nat Belg 62:119–126

    Article  Google Scholar 

  • Palmer JL, Lawn RJ, Adkins SW (2002) An embryo-rescue protocol for Vigna interspecific hybrids. Aust J Bot 50:331–338

    Article  Google Scholar 

  • Quesada V, Martinez SG, Piqueras P, Ponce MR, Micol JL (2002) Genetic architecture of NaCl tolerance in Arabidopsis. Plant Physiol 130:951–963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers ME, Craig AD, Munns R et al (2005) The development of fodder plants for the salt-affected areas of southern and eastern Australia: an overview. Aust J Exp Agric 45:301–329

    Article  Google Scholar 

  • Samineni S (2010) Physiology, genetics and QTL mapping of salt tolerance in chickpea (Cicer arietinum L.). Ph.D. Thesis, The University of Western Australia

  • Sen NK, Bhowal JG (1960) Cytotaxonomic studies on Vigna. Cytologia 25:195–207

    Article  Google Scholar 

  • Smartt J (1978) The evaluation of pulse crops. Econ Bot 32:185–198

    Article  Google Scholar 

  • Somta P, Seehalak W, Srinives P (2009) Development, characterization and cross-species amplification of mungbean (Vigna radiata) genic microsatellite markers. Conserv Genet 10:1939–1943

    Article  CAS  Google Scholar 

  • Sonnante G, Spinosa A, Marangi A, Pignone D (1997) Isozyme and RAPD analysis of the genetic diversity within and between Vigna luteola and V. marina. Ann Bot 80:741–746

    Article  CAS  Google Scholar 

  • Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol 9:137

    Article  PubMed Central  PubMed  Google Scholar 

  • Tomooka N, Vaughan DA, Moss H, Maxted N (2002) The Asian Vigna: genus Vigna subgenus Ceratotropis genetic resources. Kluwer Academic Publishers, Netherlands

    Book  Google Scholar 

  • Tomooka N, Kaga A, Isemura T, Vaughan D (2011) Vigna. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, Legume crops and forages. Springer, Berlin, pp 291–311

    Chapter  Google Scholar 

  • Tuyen DD, Lal SK, Xu DH (2010) Identification of a major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet 121:229–236

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen JW (2006) JoinMap version 4.0, software for the calculation of genetic linkage maps. Kyazma B.V, Wageningen

    Google Scholar 

  • Verdcourt B (1970) Studies in the Leguminosae-Papilionoideae for the ‘Flora of Tropical East Africa’, IV. Kew Bull 24:507–569

    Article  Google Scholar 

  • Verdcourt B (1971) Phaseoleae. In: Milne-Redhead E, Polhill RM (eds) Flora of tropical East Africa, Leguminosae (part 4), Papilionideae (2). Crown Agents for Overseas Governments, London, pp 625–627

    Google Scholar 

  • Wang XW, Kaga A, Tomooka N, Vaughan DA (2004) The development of SSR markers by a new method in plants and their application to gene flow studies in azuki bean [Vigna angularis (Willd.) Ohwi & Ohashi]. Theor Appl Genet 109:352–360

    CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. North Carolina State University, Raleigh

    Google Scholar 

  • Wilson C, Liu X, Lesch SM, Suarez DL (2009) Growth response of major U.S. cowpea cultivars. I. Biomass accumulation and salt tolerance. Hortic Sci 41:225–230

    Google Scholar 

  • Win KT, Oo AZ, Hirasawa T, Ookawa T, Yutaka H (2011) Genetic analysis of Myanmar Vigna species in response to salt stress at the seedling stage. Afr J Biotechnol 10:1615–1624

    CAS  Google Scholar 

  • Yu K, Park J, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    Article  CAS  PubMed  Google Scholar 

  • Zhang LP, Lin GY, Foolad MR (2003) QTL comparison of salt tolerance during seed germination and vegetative growth in a Lycopersicon esculentum × L. pimpinellifolium RIL population. Acta Hort 618:59–67

    CAS  Google Scholar 

  • Zhang L, Wang S, Li H, Deng Q, Zheng A, Li S, Li P, Li Z, Wang J (2010) Effects of missing marker and segregation distortion on QTL mapping in F2 populations. Theor Appl Genet 121:1071–1082

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by JST, PRESTO to K. Naito, and by the Royal Golden Jubilee (RGJ) Ph.D. Program jointly funded by the Thailand Research Fund (TRF) and Kasetsart University to P. Srinives and S. Chankaew.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All the experiments carried out in this study comply with the current laws of both Thailand and Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ken Naito or Peerasak Srinives.

Additional information

Communicated by A. H. Schulman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1. Leave wilt scores using the scales of 1 to 9 for salt tolerance evaluation in the F2:3 population (V. luteola x V. marina subsp. oblonga) after being maintained at 300 mM for 30 days.

Supplementary material 1 (DOC 53 kb)

Supplementary material 2 (EPS 1886 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chankaew, S., Isemura, T., Naito, K. et al. QTL mapping for salt tolerance and domestication-related traits in Vigna marina subsp. oblonga, a halophytic species. Theor Appl Genet 127, 691–702 (2014). https://doi.org/10.1007/s00122-013-2251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2251-1

Keywords

Navigation