Skip to main content
Log in

Efficient heat-shock removal of the selectable marker gene in genetically modified grapevine

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cisgenesis is one of the new plant breeding technologies emerging as a promising tool for the future, more publicly accepted than the traditional transgenic approach. One of the requirements for a cisgenic plant is the absence of selectable marker genes in the genome. In this study, a system for marker gene removal after selection of transgenic plants has been tested in grapevine. This is based on a binary vector containing a heat-shock-inducible promoter which, upon induction, activates a recombinase to produce the excision of a FRT-flanked box. After the removal of this cassette hosting both the marker gene, nptII, and the recombinase itself, the reporter gene gus may be expressed. Gene transfer experiments on grapevine embryogenic callus were carried out via Agrobacterium tumefaciens. Different heat-shock treatments with variable temperatures and heat incubations times were tested on a selected line and the optimal conditions for a complete removal of nptII with the subsequent gus transcription were found. Plants were analysed by means of qPCR on genomic DNA, to quantify nptII removal, and by a fluorimetric assay to measure gus activity. Our study is conceived as a proof-of-concept to investigate the feasibility of this method in grapevine in view of developing an efficient cisgenic approach in this valuable fruit crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akbudak MA, Srivastava V (2011) Improved FLP recombinase, FLPe, efficiently removes marker gene from transgene locus developed by Cre-lox mediated site-specific gene integration in rice. Mol Biotechnol 49:82–89. doi:10.1007/s12033-011-9381-y

    Article  CAS  PubMed  Google Scholar 

  • Ballester A, Cervera M, Peña L (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep 27:1005–1015. doi:10.1007/s00299-008-0523-z

    Article  CAS  PubMed  Google Scholar 

  • Blechl A, Lin J, Shao M et al (2012) The Bxb1 recombinase mediates site-specific deletion in transgenic wheat. Plant Mol Biol Rep 30:1357–1366. doi:10.1007/s11105-012-0454-2

    Article  CAS  Google Scholar 

  • Bouquet A, Torregrosa L, Iocco P, Thomas MR (2006) Grapevine (Vitis vinifera L.). Methods Mol Biol 344:273–285. doi:10.1385/1-59745-131-2:273

    CAS  PubMed  Google Scholar 

  • Breyer D, Kopertekh L, Reheul D (2014) Alternatives to antibiotic resistance marker genes for in vitro selection of genetically modified plants—scientific developments, current use, operational access and biosafety considerations. CRC Crit Rev Plant Sci 33:286–330. doi:10.1080/07352689.2013.870422

    Article  CAS  Google Scholar 

  • Chaïb J, Torregrosa L, MacKenzie D, Corena P, Bouquet A, Thomas MR (2010) The grape microvine—a model system for rapid forward and reverse genetics of grapevines. Plant J 62:1083–1092

    PubMed  Google Scholar 

  • Chong-Pérez B, Kosky RG, Reyes M et al (2012) Heat shock induced excision of selectable marker genes in transgenic banana by the Cre-lox site-specific recombination system. J Biotechnol 159:265–273. doi:10.1016/j.jbiotec.2011.07.031

    Article  PubMed  Google Scholar 

  • Cuellar W, Gaudin A, Solórzano D et al (2006) Self-excision of the antibiotic resistance gene nptII using a heat inducible Cre-loxP system from transgenic potato. Plant Mol Biol 62:71–82. doi:10.1007/s11103-006-9004-3

    Article  CAS  PubMed  Google Scholar 

  • Czarnecka E, Key JL, Gurley WB (1989) Regulatory domains of the Gmhsp17.5-E heat shock promoter of soybean. Mol Cell Biol 9:3457–3463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dalla Costa L, Vaccari I, Mandolini M, Martinelli L (2009) Elaboration of a reliable strategy based on real-time PCR to characterize genetically modified plantlets and to evaluate the efficiency of a marker gene removal in grape (Vitis spp.). J Agric Food Chem 57:2668–2677. doi:10.1021/jf802740m

    Article  CAS  PubMed  Google Scholar 

  • Dalla Costa L, Mandolini M, Poletti V, Martinelli L (2010) Comparing 17-b-estradiol supply strategies for applying the XVE-Cre/loxP system in grape gene transfer (Vitis vinifera L.). Vitis J Grapevine Res 49:201–208

    CAS  Google Scholar 

  • Dalla Costa L, Pinto-Sintra AL, Campa M et al (2014) Development of analytical tools for evaluating the effect of T-DNA chimeric integration on transgene expression in vegetatively propagated plants. Plant Cell Tissue Organ Cult 118:471–484. doi:10.1007/s11240-014-0499-z

    Article  CAS  Google Scholar 

  • Darwish NA, Khan RS, Ntui VO et al (2014) Generation of selectable marker-free transgenic eggplant resistant to Alternaria solani using the R/RS site-specific recombination system. Plant Cell Rep 33:411–421. doi:10.1007/s00299-013-1541-z

    Article  CAS  PubMed  Google Scholar 

  • De Buck S, Windels P, De Loose M, Depicker A (2004) Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable beta-glucuronidase accumulation levels. Cell Mol Life Sci 61:2632–2645. doi:10.1007/s00018-004-4284-8

    Article  PubMed  Google Scholar 

  • De Vetten N, Wolters A-M, Raemakers K et al (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotechnol 21:439–442

    Article  PubMed  Google Scholar 

  • Dutt M, Li ZT, Dhekney SA, Gray DJ (2008) A co-transformation system to produce transgenic grapevines free of marker genes. Plant Sci 175:423–430. doi:10.1016/j.plantsci.2008.06.014

    Article  CAS  Google Scholar 

  • Espinoza C, Schlechter R, Herrera D, Torres E, Serrano A, Medina C, Arce-Johnson P (2013) Cisgenesis and intragenesis: new tools for improving crops. Biol Res 46:323–331

    Article  CAS  PubMed  Google Scholar 

  • European Food Safety Authority (2012) Scientific opinion addressing the safety assessment of plants developed through cisgenesis and intragenesis 1. EFSA J 10:2561. doi:10.2903/j.efsa.2012.2561

    Google Scholar 

  • Flachowsky H, Riedel M, Reim S, Hanke M-V (2008) Evaluation of the uniformity and stability of T-DNA integration and gene expression in transgenic apple plants. Electron J Biotechnol. doi:10.2225/vol11-issue1-fulltext-10

  • Fladung M, Becker D (2010) Targeted integration and removal of transgenes in hybrid aspen (Populus tremula L. × P. tremuloides Michx.) using site-specific recombination systems. Plant Biol 12:334–340. doi:10.1111/j.1438-8677.2009.00293.x

    Article  CAS  PubMed  Google Scholar 

  • Franks T, Gang He D, Thomas M (1998) Regeneration of transgenic shape Vitis vinifera L. Sultana plants: genotypic and phenotypic analysis. Mol Breed 4:321–333

    Article  CAS  Google Scholar 

  • Gambino G, Chitarra W, Maghuly F et al (2009) Characterization of T-DNA insertions in transgenic grapevines obtained by Agrobacterium-mediated transformation. Mol Breed 24:305–320. doi:10.1007/s11032-009-9293-8

    Article  CAS  Google Scholar 

  • García-Almodóvar RC, Petri C, Padilla IMG, Burgos L (2013) Combination of site-specific recombination and a conditional selective marker gene allows for the production of marker-free tobacco plants. Plant Cell Tissue Organ Cult 116:205–215. doi:10.1007/s11240-013-0396-x

    Article  Google Scholar 

  • Gray DJ, Li ZT, Dhekney SA (2014) Precision breeding of grapevine (Vitis vinifera L.) for improved traits. Plant Sci 228:3–10. doi:10.1016/j.plantsci.2014.03.023

    Article  CAS  PubMed  Google Scholar 

  • Herzog K, Flachowsky H, Deising HB, Hanke M-V (2012) Heat-shock-mediated elimination of the nptII marker gene in transgenic apple (Malus × domestica Borkh.). Gene 498:41–49. doi:10.1016/j.gene.2012.01.074

    Article  CAS  PubMed  Google Scholar 

  • Hoff T, Schnorr KM, Mundy J (2001) A recombinase-mediated transcriptional induction system in transgenic plants. Plant Mol Biol 45:41–49. doi:10.1023/A:1006402308365

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene-transfer to plants. Transgenic Res 2:208–218. doi:10.1007/bf01977351

    Article  CAS  Google Scholar 

  • Kawai K, Kaku K, Izawa N et al (2007) Functional analysis of transgenic rice plants expressing a novel mutated ALS gene of rice. J Pestic Sci 32:385–392. doi:10.1584/jpestics.G07-08

    Article  CAS  Google Scholar 

  • Kawai K, Kaku K, Izawa N et al (2010) Transformation of Arabidopsis by mutated acetolactate synthase genes from rice and Arabidopsis that confer specific resistance to pyrimidinylcarboxylate-type ALS inhibitors. Plant Biotechnol 27:75–84

    Article  CAS  Google Scholar 

  • Khan RS, Nakamura I, Mii M (2011) Development of disease-resistant marker-free tomato by R/RS site-specific recombination. Plant Cell Rep 30:1041–1053. doi:10.1007/s00299-011-1011-4

    Article  CAS  PubMed  Google Scholar 

  • Khattri A, Nandy S, Srivastava V (2011) Heat-inducible Cre-lox system for marker excision in transgenic rice. J Biosci 36:37–42. doi:10.1007/s12038-011-9010-8

    Article  CAS  PubMed  Google Scholar 

  • Kilby NJ, Davies GJ, Snaith MR (1995) FLP recombinase in transgenic plants: constitutive activity in stably transformed tobacco and generation of marked cell clones in Arabidopsis. Plant J 8:637–652. doi:10.1046/j.1365-313X.1995.08050637.x

    Article  CAS  PubMed  Google Scholar 

  • Kopertekh L, Broer I, Schiemann J (2009) Developmentally regulated site-specific marker gene excision in transgenic B. napus plants. Plant Cell Rep 28:1075–1083. doi:10.1007/s00299-009-0711-5

    Article  CAS  PubMed  Google Scholar 

  • Li B, Li N, Duan X et al (2010) Generation of marker-free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. J Biotechnol 145:206–213. doi:10.1016/j.jbiotec.2009.11.010

    Article  CAS  PubMed  Google Scholar 

  • Luo K, Duan H, Zhao D et al (2007) “GM-gene-deletor”: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274. doi:10.1111/j.1467-7652.2006.00237.x

    Article  CAS  PubMed  Google Scholar 

  • Luo K, Sun M, Deng W, Xu S (2008) Excision of selectable marker gene from transgenic tobacco using the GM-gene-deletor system regulated by a heat-inducible promoter. Biotechnol Lett 30:1295–1302. doi:10.1007/s10529-008-9684-7

    Article  CAS  PubMed  Google Scholar 

  • Lusser M, Parisi C, Plan D, Rodríguez-cerezo E (2011) New plant breeding techniques, state-of-the-art and prospects for commercial development. JRC 63971, EUR 24760 EN, ISBN 978-92-79-19715-4, ISSN 1018-5593, doi:10.2791/54761, Publications Office of the European Union, Luxembourg, pp 1–219

  • Lusser M, Parisi C, Plan D, Rodríguez-cerezo E (2012) Deployment of new biotechnologies in plant breeding. Nat Biotechnol 30:231–239

    Article  CAS  PubMed  Google Scholar 

  • Lyznik LA, Gordon-Kamm WJ, Tao Y (2003) Site-specific recombination for genetic engineering in plants. Plant Cell Rep 21:925–932. doi:10.1007/s00299-003-0616-7

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Boresjza-Wysocka EE, Norelli JL et al (2010) Genetic transformation of apple (Malus × domestica) without use of a selectable marker gene. Tree Genet Genomes 6:423–433. doi:10.1007/s11295-009-0260-7

    Article  Google Scholar 

  • McCown BH, Lloyd G (1981) Woody plant medium (WPM)—a mineral nutrient formulation for microculture of woody plant-species. Hortic Sci 16:453

    Google Scholar 

  • Mlynárová L, Conner AJ, Nap J-P (2006) Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol J 4:445–452. doi:10.1111/j.1467-7652.2006.00194.x

    Article  PubMed  Google Scholar 

  • Moravcíková J, Vaculková E, Bauer M, Libantová J (2008) Feasibility of the seed specific cruciferin C promoter in the self excision Cre/loxP strategy focused on generation of marker-free transgenic plants. Theor Appl Genet 117:1325–1334. doi:10.1007/s00122-008-0866-4

    Article  PubMed  Google Scholar 

  • Nandy S, Srivastava V (2012) Marker-free site-specific gene integration in rice based on the use of two recombination systems. Plant Biotechnol J 10:904–912. doi:10.1111/j.1467-7652.2012.00715.x

    Article  CAS  PubMed  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163(80):85–87. doi:10.1126/science.163.3862.85

    Article  CAS  PubMed  Google Scholar 

  • Nocarova E, Fischer L (2009) Cloning of transgenic tobacco BY-2 cells; an efficient method to analyse and reduce high natural heterogeneity of transgene expression. BMC Plant Biol 9:44. doi:10.1186/1471-2229-9-44

    Article  PubMed Central  PubMed  Google Scholar 

  • Ogawa T, Kawahigashi H, Toki S, Handa H (2008) Efficient transformation of wheat by using a mutated rice acetolactate synthase gene as a selectable marker. Plant Cell Rep 27:1325–1331. doi:10.1007/s00299-008-0553-6

    Article  CAS  PubMed  Google Scholar 

  • Parliament European (2013) Commission implementing regulation (EU) No 503/2013. Off J Eur Union L 157:1–48

    Google Scholar 

  • Petri C, Hily J-M, Vann C et al (2011) A high-throughput transformation system allows the regeneration of marker-free plum plants (Prunus domestica). Ann Appl Biol 159:302–315. doi:10.1111/j.1744-7348.2011.00499.x

    Article  Google Scholar 

  • Petri C, López-Noguera S, Wang H et al (2012) A chemical-inducible Cre-LoxP system allows for elimination of selection marker genes in transgenic apricot. Plant Cell Tissue Organ Cult 110:337–346. doi:10.1007/s11240-012-0155-4

    Article  CAS  Google Scholar 

  • Rao MR, Moon HS, Schenk TMH et al (2010) FLP/FRT recombination from yeast: application of a two gene cassette scheme as an inducible system in plants. Sensors 10:8526–8535. doi:10.3390/s100908526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ray K, Jagannath A, Gangwani S et al (2004) Mutant acetolactate synthase gene is an efficient in vitroselectable marker for the genetic transformation of Brassicajuncea (oilseed mustard). J Plant Physiol 161:1079–1083

    Article  CAS  PubMed  Google Scholar 

  • Righetti L, Djennane S, Berthelot P et al (2014) Elimination of the nptII marker gene in transgenic apple and pear with a chemically inducible R/Rs recombinase. Plant Cell Tissue Organ Cult 117:335–348. doi:10.1007/s11240-014-0443-2

    Article  CAS  Google Scholar 

  • Schaart JG, Krens FA, Pelgrom KTB et al (2004) Effective production of marker-free transgenic strawberry plants using inducible site-specific recombination and a bifunctional selectable marker gene. Plant Biotechnol J 2:233–240. doi:10.1111/j.1467-7652.2004.00067.x

    Article  CAS  PubMed  Google Scholar 

  • Schouten HJ, Krens FA, Jacobsen E (2006) Cisgenic plants are similar to traditionally bred plants. EMBO Rep 7:750–753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. University Press, Ames

    Google Scholar 

  • Sorrell DA, Kolb AF (2005) Targeted modification of mammalian genomes. Biotechnol Adv 23:431–469. doi:10.1016/j.biotechadv.2005.03.003

    Article  CAS  PubMed  Google Scholar 

  • Sreekala C, Wu L, Gu K et al (2005) Excision of a selectable marker in transgenic rice (Oryza sativa L.) using a chemically regulated Cre/loxP system. Plant Cell Rep 24:86–94. doi:10.1007/s00299-004-0909-5

    Article  CAS  PubMed  Google Scholar 

  • Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000a) A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J 22:461–469

    Article  CAS  PubMed  Google Scholar 

  • Sugita K, Kasahara T, Matsunaga E, Ebinuma H (2000b) A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J 22:461–469

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen W, Ruttink T, Borst-Vrenssen AW, van der Plas LH, van der Krol AR (2001) Characterization of position-induced spatial and temporal regulation of transgene promoter activity in plants. J Exp Bot 52:949–959

    Article  CAS  PubMed  Google Scholar 

  • Verweire D, Verleyen K, De Buck S et al (2007) Marker-free transgenic plants through genetically programmed auto-excision. Plant Physiol 145:1220–1231. doi:10.1104/pp.107.106526

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vidal JR, Kikkert JR, Donzelli BD et al (2006) Biolistic transformation of grapevine using minimal gene cassette technology. Plant Cell Rep 25:807–814. doi:10.1007/s00299-006-0132-7

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Li P, Hanania U et al (2005a) Improvement of Agrobacterium-mediated transformation efficiency and transgenic plant regeneration of Vitis vinifera L. by optimizing selection regimes and utilizing cryopreserved cell suspensions. Plant Sci 168:565–571. doi:10.1016/j.plantsci.2004.09.033

    Article  CAS  Google Scholar 

  • Wang Y, Chen B, Hu Y et al (2005b) Inducible excision of selectable marker gene from transgenic plants by the Cre/lox site-specific recombination system. Transgenic Res 14:605–614. doi:10.1007/s11248-005-0884-9

    Article  CAS  PubMed  Google Scholar 

  • Würdig J, Flachowsky H, Hanke M-V (2013) Studies on heat shock induction and transgene expression in order to optimize the Flp/FRT recombinase system in apple (Malus × domestica Borkh.). Plant Cell, Tissue Organ Cult 115:457–467. doi:10.1007/s11240-013-0376-1

    Article  Google Scholar 

  • Würdig J, Flachowsky H, Saß A et al (2015) Improving resistance of different apple cultivars using the Rvi6 scab resistance gene in a cisgenic approach based on the Flp/FRT recombinase system. Mol Breed 35:95. doi:10.1007/s11032-015-0291-8

    Article  Google Scholar 

  • Yang M, Djukanovic V, Stagg J et al (2009) Targeted mutagenesis in the progeny of maize transgenic plants. Plant Mol Biol 70:669–679. doi:10.1007/s11103-009-9499-5

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Subbarao S, Addae P et al (2003) Cre/lox-mediated marker gene excision in transgenic maize (Zea mays L.) plants. TAG Theor Appl Genet 107:1157–1168. doi:10.1007/s00122-003-1368-z

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li H, Ouyang B et al (2006) Chemical-induced autoexcision of selectable markers in elite tomato plants transformed with a gene conferring resistance to lepidopteran insects. Biotechnol Lett 28:1247–1253. doi:10.1007/s10529-006-9081-z

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Peng A, Xu L et al (2013) Efficient auto-excision of a selectable marker gene from transgenic citrus by combining the Cre/loxP system and ipt selection. Plant Cell Rep 32:1601–1613. doi:10.1007/s00299-013-1470-x

    Article  CAS  PubMed  Google Scholar 

  • Zuo J, Niu Q-W, Geir Mølle S, Chua N-H (2001) Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol 19:157–161

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ivana Gribaudo for sharing with us ‘Brachetto’ embryogenic calli and Justin Lashbrooke for the excellent proof reading of the manuscript. This work was supported by the Autonomous Province of Trento

Author’s contribution

LDC propagated the transgenic lines, designed and performed heat-shock induction experiments, carried out PCR, qPCR, fluorimetric assays, statistical analysis, and wrote the manuscript. SP designed and performed heat-shock induction experiments, carried out the long range PCR, gus histochemical assay, and revised the manuscript. MC carried out grapevine gene transfer and revised the manuscript. HF developed the binary vector pB–Npt–Hsp–Flp–Gus and revised the manuscript. MVH conceived the project and revised the manuscript. MM conceived the project and revised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lorenza Dalla Costa or Mickael Malnoy.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalla Costa, L., Piazza, S., Campa, M. et al. Efficient heat-shock removal of the selectable marker gene in genetically modified grapevine. Plant Cell Tiss Organ Cult 124, 471–481 (2016). https://doi.org/10.1007/s11240-015-0907-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0907-z

Keywords

Navigation