Skip to main content
Log in

Theoretical investigation of the atmospheric chemistry of methyl difluoroacetate: reaction with Cl atoms and fate of alkoxy radical at 298 K

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A theoretical study on the mechanism of the reactions of methyl difluoroacetate (MDFA) CF2HC(O)OCH3 with Cl atoms is presented. Two conformers relatively close in energy have been identified for MDFA. Geometry optimization and frequency calculations have been performed at the MPWB1K/6-31+G(d,p) level of theory, and energetic information is further refined by calculating the energy of the species using G2(MP2) theory. Transition states (TSs) are searched on the potential energy surface involved during the reaction channels, and each of the TSs is characterized by the presence of only one imaginary frequency. The existence of TSs on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate calculation. Our calculations reveal that hydrogen abstraction from the –CH3 group is thermodynamically and kinetically more facile than that from the –CF2H group. Theoretically calculated rate constants at 298 K using the canonical transition state theory are found to be in good agreement with the experimentally measured ones. The atmospheric lifetime of CF2HC(O)OCH3 was estimated to be 16 years. The atmospheric fate and the main degradation process of alkoxy radical CF2HC(O)OCH2O are also discussed for the first time. Our calculation indicates that the fluorine atoms substitution has deactivating effect for the α-ester rearrangement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Farman JD, Gardiner BG, Shanklin JD (1985) Nature 315:207–210

    Article  CAS  Google Scholar 

  2. Sekiya A, Misaki S (2000) J Fluor Chem 101:215–221

    Article  CAS  Google Scholar 

  3. Ravishankara RA, Turnipseed AA, Jensen NR, Barone S, Mills M, Howark CJ, Solomon S (1994) Science 263:71–75

    Article  CAS  Google Scholar 

  4. Urata S, Takada A, Uchimaru T, Chandra AK (2003) Chem Phys Lett 368:215–223

    Article  CAS  Google Scholar 

  5. Singh HJ, Mishra BK (2010) J Mol Model 16:1473–1480

    Article  CAS  Google Scholar 

  6. Wallington TJ, Schneider WF, Sehested J, Bilde M, Platz J, Nielsen OJ, Christensen LK, Molina MJ, Molina LT, Wooldridge PW (1997) J Phys Chem A 101:8264–8274

    Article  CAS  Google Scholar 

  7. Ninomiya Y, Kawasaki M, Guschin A, Molina LT, Molina MJ, Wallington TJ (2000) Environ Sci Technol 34(14):2973–2978

    Article  CAS  Google Scholar 

  8. Chen L, Kutsuna S, Tokuhashi K, Sekiya A, Tamai R, Hibino Y (2005) J Phys Chem A 109:4766–4771

    Article  CAS  Google Scholar 

  9. Singh HJ, Mishra BK (2011) J Mol Model 17:415–422

    Article  CAS  Google Scholar 

  10. Urata S, Takada A, Uchimaru T, Chandra AK (2003) Chem Phys Lett 368:215–223

    Article  CAS  Google Scholar 

  11. Singh HJ, Mishra BK, Rao PK (2010) Bull Korean Chem Soc 31:3718–3722

    Article  CAS  Google Scholar 

  12. Nohara K, Toma M, Kutsuna S, Takeuchi K, Ibusuki T (2001) Environ Sci Technol 35(1):114–120

    Article  CAS  Google Scholar 

  13. Bravo I, Dıaz-de-Mera Y, Aranda A, Moreno E, Nutt DR, Marston G (2011) Phys Chem Chem Phys 13:17185–17193

    Article  CAS  Google Scholar 

  14. Dalmasso PR, Taccone RA, Nieto JD, Teruel MA, Lane SI (2006) Atmos Environ 40:7298–7303

    Article  CAS  Google Scholar 

  15. Wingenter OW, Kubo MK, Blake NJ, Smith TW, Blake DR (1996) J Geophys Res 101:4331–4340

    Article  CAS  Google Scholar 

  16. Sulback AMP, Nielsen OJ, Wallington TJ, Hurley MD, DeMoore GW (2005) J Phys Chem A 109:3926–3934

    Article  Google Scholar 

  17. Jordan A, Frank H (1999) Environ Sci Technol 33(4):522–527

    Article  CAS  Google Scholar 

  18. Tanaka T, Doi T, Okada S, Yamaki J (2009) Fuel Cells 09:269–272

    Article  CAS  Google Scholar 

  19. Zhao L, Okada S, Yamaki J (2013) J Power Sources 244:369–374

    Article  CAS  Google Scholar 

  20. Olivier B, Karol L WO, Patent 2,007,093,567

  21. Zheng S-Z, Cao X-Y, Zhou Q, Wang S-H, Hua G-S, Lu J-Q, Luo M-F, Wang Y-J (2013) J Fluor Chem 145:132–135

    Article  CAS  Google Scholar 

  22. Blanco MB, Teruel MA (2007) Atmos Environ 41(34):7330–7338

    Article  CAS  Google Scholar 

  23. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2008) Chem Phys Lett 453:18–23

    Article  CAS  Google Scholar 

  24. Singh HJ, Tiwari L, Rao PK, Mol Phys. doi:10.1080/00268976.2013.868554

  25. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2010) Environ Sci Technol 44:2354–2359

    Article  CAS  Google Scholar 

  26. Henon E, Bohr F, Gomex NS, Caralp F (2003) Phys Chem Chem Phys 5:5431–5437

    Article  CAS  Google Scholar 

  27. Ferenac MA, Davis AJ, Holloway AS, Dibble TS (2003) J Phys Chem A 107:63–72

    Article  CAS  Google Scholar 

  28. Singh HJ, Mishra BK, Gour NK (2010) Theor Chem Acc 125:57–64

    Article  CAS  Google Scholar 

  29. Vereecken L, Peeters J (2009) Phys Chem Chem Phys 11:9062–9074

    Article  CAS  Google Scholar 

  30. Singh HJ, Mishra BK, Rao PK (2012) Can J Chem 90:403–409

    Article  CAS  Google Scholar 

  31. Singh HJ, Mishra BK (2011) J Chem Sci 123:733–741

    Article  CAS  Google Scholar 

  32. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  33. Zeegers-Huyskens T, Lily M, Sutradhar D, Chandra AK (2013) J Phys Chem A 117:8010–8016

    Article  CAS  Google Scholar 

  34. Chakrabatty AK, Mishra BK, Bhattacharjee D, Deka RC (2013) J Fluor Chem 154:60–66

    Article  Google Scholar 

  35. Hratchian HP, Schlegel HB (2005) J Chem Theory Comput 1:61–69

    Article  CAS  Google Scholar 

  36. Curtiss LA, Raghavachari K, Pople JA (1993) J Chem Phys 98:1293–1298

    Article  CAS  Google Scholar 

  37. Chakrabatty AK, Mishra BK, Bhattacharjee D, Deka RC (2013) Mol Phys 111:860–867

    Article  Google Scholar 

  38. Chandra AK (2012) J Mol Model 18:4239–4247

    Article  CAS  Google Scholar 

  39. Mishra BK, Chakrabatty AK, Deka RC (2013) J Mol Model 19:3263–3270

    Article  CAS  Google Scholar 

  40. Devi KhJ, Chandra AK (2011) Comput Theor Chem 965:268–274

    Article  Google Scholar 

  41. Mishra BK, Chakrabatty AK, Deka RC (2014) Struct Chem 25:463–470

    Google Scholar 

  42. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V,Mennucci B, Petersson GA, Nakatsuji H, CaricatoM, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, EharaM, ToyotaK, FukudaR, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell K, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09, revision B.01. Gaussian Inc., Wallingford

  43. Abraham RJ, Tormenab CF, Rittner R (2001) J Chem Soc Perkin Trans 2:815–820

    Article  Google Scholar 

  44. Laidler KJ (2004) Chemical Kinetics, 3rd edn. Pearson Education, New Delhi

    Google Scholar 

  45. Johnston HS, Heicklen J (1962) J Phys Chem 66:532–533

    Article  Google Scholar 

  46. Truhlar DG, Chuang YY (2000) J Chem Phys 112:1221–1228

    Article  Google Scholar 

  47. Truhlar DG (1991) J Comput Chem 12:266–270

    Article  CAS  Google Scholar 

  48. Papadimitriou VC, Kambanis KG, Lazarou YG, Papagiannakopoulos P (2004) J Phys Chem A 108:2666–2674

    Article  CAS  Google Scholar 

  49. Spicer CW, Chapman EG, Finlayson-Pitts BJ, Plastridge RA, Hubbe JM, Fast JD, Berkowitz CM (1998) Nature 394:353–356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Department of Science and Technology, New Delhi in the form of a project (SR/NM.NS-1023/2011(G)). BKM is thankful to University Grants Commission, New Delhi for providing Dr. D. S. Kothari Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupesh Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deka, R.C., Mishra, B.K. Theoretical investigation of the atmospheric chemistry of methyl difluoroacetate: reaction with Cl atoms and fate of alkoxy radical at 298 K. Struct Chem 25, 1475–1482 (2014). https://doi.org/10.1007/s11224-014-0425-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-014-0425-3

Keywords

Navigation