Skip to main content
Log in

Ab initio studies on the decomposition kinetics of CF3OCF2O radical

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The present study deals with the decomposition of CF3OCF2O radical formed from a hydrofluoroether, CF3OCHF2 (HFE-125), in the atmosphere. The study is performed using ab initio quantum mechanical methods. Two plausible pathways of decomposition of the titled species have been considered, one involving C-O bond scission and the other occurring via F atom elimination. The geometries of the reactant, products and transition states involved in the decomposition pathways are optimized and characterized at DFT (B3LYP) level of theory using 6-311G(d,p) basis set. Single point energy calculations have been performed at G2M(CC,MP2) level of theory. Out of the two prominent decomposition channels considered, the C-O bond scission is found to be dominant involving a barrier height of 15.3 kcal mol−1 whereas the F-elimination path proceeds with a barrier of 26.1 kcal mol−1. The thermal rate constants for the above two decomposition pathways are evaluated using canonical transition state theory (CTST) and these are found to be 1.78 × 106 s−1 and 2.83 × 10−7 s−1 for C-O bond scission and F-elimination respectively at 298 K and 1 atm pressure. Transition states are searched on the potential energy surfaces involved during the decomposition channels and each of the transition states is characterized. The existence of transition states on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate (IRC) calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Solomon S (1990) Nature (London) 6291:347–354

    Article  Google Scholar 

  2. Molina MJ, Rowland FS (1974) Nature 249:810–814

    Article  CAS  Google Scholar 

  3. Rowland FS, Molina MJ (1994) Chem Eng News 8:72–76

    Google Scholar 

  4. Weubbles DJ (1983) J Geophys Res 88:1433–1443

    Article  Google Scholar 

  5. Scientific Assessment of Stratospheric Ozone (1989) Vol 11; World Meteorological Organization, Global Ozone Research and Monitoring Project Report No. 20, Geneva

  6. Wayne RP (2001) Chemistry of atmospheres. Clarendon press, Oxford

    Google Scholar 

  7. Dekant W (1996) Environ Health Perspect 104:75–83

    Article  CAS  Google Scholar 

  8. Hayman G, Derwent RD (1997) Environ Sci Technol 31:327–336

    Article  CAS  Google Scholar 

  9. Tsai WT, Chen HP, Hsien WY (2002) J Loss Prev Process Ind 15:65–75

    Article  Google Scholar 

  10. Tsai WT (2005) Chemosphere 61:1539–1547

    Article  CAS  Google Scholar 

  11. Pinnock S, Hurly M, Shine KP, Wallington TJ, Smyth TJ (1995) J Geophys Res 100:23227–23238

    Article  CAS  Google Scholar 

  12. International Panel on Climate Change (IPCC) (1996) Climate change 1995: the science of climate change. Cambridge University Press, New York

    Google Scholar 

  13. Tsai WT (2005) J Hazard Mater 119:69–78

    Article  CAS  Google Scholar 

  14. Sekiya A, Misaki S (2000) J Fluorine Chem 101:215–221

    Article  CAS  Google Scholar 

  15. Bivens DB, Minor BH (1998) Int J Refrig 21:567–576

    Article  CAS  Google Scholar 

  16. Cooper DL, Cunningham TP, Allan NL, McCulloch A (1992) Atmos Environ 26A:1331–1334

    CAS  Google Scholar 

  17. Blowers P, Tetrault KF, Morehead YT (2008) Theor Chem Acc 119:369–381

    Article  CAS  Google Scholar 

  18. Ravishankara RA, Turnipseed AA, Jensen NR, Barone S, Mills M, Howark CJ, Solomon S (1994) Science 263:71–75

    Article  CAS  Google Scholar 

  19. Granier C, Shine KP, Daniel JS, Hansen JE, Lal S, Stordal F (1999) Climate effects of ozone and halocarbon changes, in scientific Assessment of Ozone Depletion: 1998 Rep. 44, Global Ozone Research and Monitoring Project. World Meteorological Organization, Geneva

    Google Scholar 

  20. Good DA, Francisco JS (1998) J Phys Chem 102:1854–1864

    CAS  Google Scholar 

  21. Sekiya A, Misaki S (1996) Chemtech 26:44–48

    CAS  Google Scholar 

  22. Smith ND (1992) EPA-60/F-92-012. Springerfield

  23. Good DA, Mike K, Randy S, Francisco JS (1999) J Phys Chem 103:9230–9240

    CAS  Google Scholar 

  24. Murray JS, Toro-Labbe A, Clark T, Politzer P (2009) J Mol Model 15:701–706

    Article  CAS  Google Scholar 

  25. Atkinson R (1990) Atoms Environ 24A:1–41

    CAS  Google Scholar 

  26. Hehre WJ, Radom L, PvR S, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB et al (2003) Gaussian 03, Rev C.02. Gaussian Inc, Pittsburgh

    Google Scholar 

  28. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  29. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  30. Gonzalez C, Schlegel HB (1990) J Chem Phys 94:5523–5527

    Article  CAS  Google Scholar 

  31. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  32. Mebel AM, Morokuma K, Lin MC (1995) J Chem Phys 103:7414–7421

    Article  CAS  Google Scholar 

  33. Curtiss LA, Redfern PC, Smith BJ, Radom L (1996) J Chem Phys 104:5148–5164

    Article  CAS  Google Scholar 

  34. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  35. Frisch A, Nielsen AB, Holder AJ (2000) GaussView reference. Gaussian Inc, Wallingford

    Google Scholar 

  36. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  37. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  38. Wigner EP (1932) Z Phys Chem B19:203–216

    CAS  Google Scholar 

  39. Somnitz H, Zellner R (2001) Phys Chem Chem Phys 3:2352–2364

    Article  CAS  Google Scholar 

  40. Henon E, Bohr F, Sokolowski Gomez N, Caralp F (2003) Phys Chem Chem Phys 5:5431–5437

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (BKM) is thankful to University Grants Commission, New Delhi for providing financial assistance under its Department of Special Assistance / Basic Scientific Research Program sanctioned to the Department of Chemistry, Deendayal Upadhyay Gorakhpur University, Gorakhpur. Authors are thankful to the reviewer for making valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Ji Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H.J., Mishra, B.K. Ab initio studies on the decomposition kinetics of CF3OCF2O radical. J Mol Model 17, 415–422 (2011). https://doi.org/10.1007/s00894-010-0735-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0735-3

Keywords

Navigation