Skip to main content
Log in

Ab initio studies on the reactivity of the CF3OCH2O radical: Thermal decomposition vs. reaction with O2

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Hydrofluoroethers are being considered as potential candidates for third generation refrigerants. The present investigation involves the ab initio quantum mechanical study of the decomposition mechanism of CF3OCH2O radical formed from a hydrofluoroether, CF3OCH3 (HFE-143a) in the atmosphere. The geometries of the reactant, products and transition states involved in the decomposition pathways are optimized and characterized at the DFT (B3LYP) level of theory using 6-311G(d,p) basis set. Energy calculations have been performed at the G2(MP2) and G2M(CC,MP2) level of theory. Two prominent decomposition channels, C-O bond scission and reaction with atmospheric O2 have been considered for detailed investigation. Studies performed at the G2(MP2) level reveals that the decomposition channel involving C-O bond scission occurs with a barrier height of 23.8 kcal mol−1 whereas the oxidative pathway occurring with O2 proceeds with an energy barrier of 7.2 kcal mol−1. On the other hand the corresponding values at G2M(CC,MP2) are 24.5 and 5.9 kcal mol−1 respectively. Using canonical transition state theory (CTST) rate constants for the two pathways considered are calculated at 298 K and 1 atm pressure and found to be 5.9 × 10−6 s−1 and 2.3 × 10−5 s−1 respectively. The present study concludes that reaction with O2 is the dominant path for the consumption of CF3OCH2O in the atmosphere. Transition states are searched and characterized on the potential energy surfaces involved in both of the reaction channels. The existence of transition state on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate (IRC) calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Solomon S (1990) Nature (London) 6291:347–354

    Article  Google Scholar 

  2. Molina MJ, Rowland FS (1974) Nature 249:810–814

    Article  CAS  Google Scholar 

  3. Rowland FS, Molina MJ (1994) Chem Eng News 8:72–76

    Google Scholar 

  4. Weubbles DJ (1983) J Geophys Res 88:1433–1443

    Article  Google Scholar 

  5. Scientific Assessment of Stratospheric Ozone, Vol 11. World Meteorological Organization, Global Ozone Research and Monitoring Project Report No. 20, 1989

  6. Wayne RP (2001) Chemistry of Atmospheres. Clarendon press, Oxford

    Google Scholar 

  7. Pinnock S, Hurly M, Shine KP, Wallington TJ, Smyth TJ (1995) J Geophys Res 100:23227–23238

    Article  CAS  Google Scholar 

  8. International Panel on Climate Change (IPCC) (1996) Climate change 1995: the science of climate change. Cambridge University Press, New York

    Google Scholar 

  9. Tsai WT (2005) J Hazard Mater 119:69–78

    Article  CAS  Google Scholar 

  10. Sekiya A, Misaki S (2000) J Fluorine Chem 101:215–221

    Article  CAS  Google Scholar 

  11. Bivens DB, Minor BH (1998) Int J Refrig 21:567–576

    Article  CAS  Google Scholar 

  12. Ravishankara RA, Turnipseed AA, Jensen NR, Barone S, Mills M, Howark CJ, Solomon S (1994) Science 263:71–75

    Article  CAS  Google Scholar 

  13. Granier C, Shine KP, Daniel JS, Hansen JE, Lal S, Stordal F (1999) Climate effects of ozone and halocarbon changes, in scientific Assessment of Ozone Depletion: 1998 Rep. 44, Global Ozone Research and Monitoring Project. World Meteorological Organization, Geneva, Switzerland

    Google Scholar 

  14. Cooper DL, Cunningham TP, Allan NL, McCulloch A (1992) Atmos Env 26A:1331–1334

    CAS  Google Scholar 

  15. Cooper DL, Cunningham TP, Allan NL, McCulloch A (1993) Atmos Env 27A:117–119

    CAS  Google Scholar 

  16. Chen L, Kutsuna S, Tokuhashi K, Sekiya A (2006) J Phys Chem A 110:12845–12851

    Article  CAS  Google Scholar 

  17. Urata S, Takada A, Uchimaru T, Chandra AK (2003) Chem Phys Lett 368:215–223

    Article  CAS  Google Scholar 

  18. Chen L, Kutsuna S, Tokuhashi K, Sekiya A, Takeuchi K, Ibusuki T (2003) Int J Chem Kinet 35:239–245

    Article  CAS  Google Scholar 

  19. Sun H, Gong H, Pan X, Hao L, Sun CC, Wang R, Huang X (2009) J Phys Chem A 113:5951–5957

    Article  CAS  Google Scholar 

  20. Wallington TJ, Schneider WF, Sehested J, Blide M, Platz J, Nielsen OJ, Christensen LK (1997) J Phys Chem A 101:8264–8274

    Article  CAS  Google Scholar 

  21. Atkinson R (1990) Atmos Environ 24A:1–41

    Google Scholar 

  22. Wallington TJ, Hurley MD, Fracheboud JM, Orlando JJ, Tyndall GS, Sehested J, Mogelberg TE, Nielsen OJ (1996) J Phys Chem 100:18116–18122

    Article  CAS  Google Scholar 

  23. Christensen LK, Wallington TJ, Guschin A, Hurly MD (1999) J Phys Chem A 102:1854–1864

    Google Scholar 

  24. Good DA, Mike K, Randy S, Francisco JS (1999) J Phys Chem 103:9230–9240

    CAS  Google Scholar 

  25. Good DA, Francisco JS (1998) J Phys Chem A 102:1854–1864

    Article  CAS  Google Scholar 

  26. Frisch MJ, Trucks GW, Schlegel HB et al. (2003) Gaussian 03, Rev C.02. Gaussian Inc, Pittsburgh, PA

    Google Scholar 

  27. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Gonzalez C, Schlegel HB (1990) J Chem Phys 94:5523–5527

    Article  CAS  Google Scholar 

  30. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  31. Curtiss LA, Redfern PC, Smith BJ, Radom L (1996) J Chem Phys 104:5148–5164

    Article  CAS  Google Scholar 

  32. Mebel AM, Morokuma K, Lin MC (1995) J Chem Phys 103:7414–7421

    Article  CAS  Google Scholar 

  33. Frisch A, Nielsen AB, Holder AJ (2000) GaussView Reference. Gaussian Inc, Wallingford, CT

    Google Scholar 

  34. Scott AP, Radom L (1996) J Phys Chem 100:16502–16513

    Article  CAS  Google Scholar 

  35. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  36. Wigner EP (1932) Z Phys Chem B 19:203–216

    Google Scholar 

Download references

Acknowledgments

One of the authors, BKM is thankful to University Grants Commission, New Delhi for providing fellowship under its Special Assistance Program (SAP) sanctioned to the Department of Chemistry, DDU Gorakhpur University, Gorakhpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Ji Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H.J., Mishra, B.K. Ab initio studies on the reactivity of the CF3OCH2O radical: Thermal decomposition vs. reaction with O2 . J Mol Model 16, 1473–1480 (2010). https://doi.org/10.1007/s00894-010-0665-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0665-0

Keywords

Navigation