Skip to main content
Log in

Theoretical investigation of the gas-phase reactions of CF2ClC(O)OCH3 with the hydroxyl radical and the chlorine atom at 298 K

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A Theoretical study on the mechanism of the reactions of CF2ClC(O)OCH3 with the OH radical and Cl atom is presented. Geometry optimization and frequency calculations have been performed at the MPWB1K/6-31+G(d,p) level of theory and energetic information is further refined by calculating the energy of the species using G2(MP2) theory. Transition states are searched on the potential energy surface involved during the reaction channels and each of the transition states are characterized by presence of only one imaginary frequency. The existence of transition states on the corresponding potential energy surface is ascertained by performing intrinsic reaction coordinate (IRC) calculation. Theoretically calculated rate constants at 298 K and atmospheric pressure using the canonical transition state theory (CTST) are found to be in good agreement with the experimentally measured ones. Using group-balanced isodesmic reactions as working chemical reactions, the standard enthalpies of formation for CF2ClC(O)OCH3, CF2ClC(O)OCH2 and CF3C(O)OCH3 are also reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Molina MJ, Rowland FS (1974) Nature 249:810–814

    Article  CAS  Google Scholar 

  2. Farman JD, Gardiner BG, Shanklin JD (1985) Nature 315:207–210

    Article  CAS  Google Scholar 

  3. Tsai WT (2005) J Hazard Mater 119:69–78

    Article  CAS  Google Scholar 

  4. Sekiya A, Misaki S (2000) J Fluorine Chem 101:215–221

    Article  CAS  Google Scholar 

  5. Sherwood GJ (2000) US Patent No-6,148,634

  6. Tucker MK (2012) Proceedings of The National Conference On Undergraduate Research (NCUR) Weber State University, Ogden P. No. 29–31

  7. Ravishankara RA, Turnipseed AA, Jensen NR, Barone S, Mills M, Howark CJ, Solomon S (1994) Science 263:71–75

    Article  CAS  Google Scholar 

  8. Hickson KM, Smith IWM (2001) Int J Chem Kinet 33:165–172

    Article  CAS  Google Scholar 

  9. Urata S, Takada A, Uchimaru T, Chandra AK (2003) Chem Phys Lett 368:215–223

    Article  CAS  Google Scholar 

  10. Singh HJ, Mishra BK (2010) J Mol Model 16:1473–1480

    Article  CAS  Google Scholar 

  11. Singh HJ, Mishra BK (2011) J Mol Model 17:415–422

    Article  CAS  Google Scholar 

  12. Chandra AK (2012) J Mol Model 18:4239–4247

    Article  CAS  Google Scholar 

  13. Chen L, Kutsuna S, Tokuhashi K, Sekiya A (2004) Chem Phys Lett 400:563–568

    Article  CAS  Google Scholar 

  14. Singh HJ, Mishra BK, Rao PK (2010) Bull Korean Chem Soc 31:3718–3722

    Article  CAS  Google Scholar 

  15. Beach SD, Hickson KM, Smith IWM, Tuckett RP (2001) Phys Chem Chem Phys 3:3064–3069

    Article  CAS  Google Scholar 

  16. Yang L, Liu JY, Wan SQ, Li ZS (2009) J Comput Chem 30:565–580

    Article  Google Scholar 

  17. Blanco MB, Barnes I, Teruel MA (2010) J Phys Org Chem 23:950–954

    Article  CAS  Google Scholar 

  18. Ninomiya Y, Kawasaki M, Guschin A, Molina LT, Molina MJ, Wallington TJ (2000) Environ Sci Technol 34:2973–2978

    Article  CAS  Google Scholar 

  19. Dalmasso PR, Taccone RA, Nieto JD, Teruel MA, Lane SI (2006) Atmos Environ 40:7298–7303

    Article  CAS  Google Scholar 

  20. Wingenter OW, Kubo MK, Blake NJ, Smith TW, Blake DR (1996) J Geophys Res 101:4331–4340

    Article  CAS  Google Scholar 

  21. Sulback Andersen MP, Nielsen OJ, Wallington TJ, Hurley MD, DeMoore GW (2005) J Phys Chem A 109:3926–3934

    Article  Google Scholar 

  22. Quan HD, Tamura M, Gao RX, Sekiya A (2003) J Fluorine Chem 120:131–134

    Article  CAS  Google Scholar 

  23. Sekiya A, Quan HD, Tamura M, Gao RX, Murata J (2001) J Fluorine Chem 112:145–148

    Article  CAS  Google Scholar 

  24. Chen QY, Duan JX (1993) Tetrahedron Lett 34:4241–4244

    Article  CAS  Google Scholar 

  25. Su DB, Duan JX, Yu AJ, Chen QY (1993) J Fluorine Chem 65:11–14

    Article  CAS  Google Scholar 

  26. Mcharek S, Sibille S, Nedelec JY, Perichon J (1991) J Organomettallic Chem 401:211–215

    Article  CAS  Google Scholar 

  27. Mellouki A, Bras GL, Sidebottom H (2003) Chem Rev 103:5077–5096

    Article  CAS  Google Scholar 

  28. Blanco MB, Teruel MA (2007) Chem Phys Lett 441:1–6

    Article  CAS  Google Scholar 

  29. Blanco MB, Teruel MA (2007) Atmos Environ 41:7330–7338

    Article  CAS  Google Scholar 

  30. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel MA (2008) Chem Phys Lett 453:18–23

    Article  CAS  Google Scholar 

  31. Andersen VF, Berhanu TA, Nilsson EJK, Jørgensen S, Nielsen OJ, Wallington TJ, Johnson MS (2011) J Phys Chem A 115:8906–8919

    Article  CAS  Google Scholar 

  32. Blanco MB, Bejan I, Barnes I, Wiesen P, Teruel M (2010) Environ Sci Technol 44:2354–2359

    Article  CAS  Google Scholar 

  33. Frisch MJ et al. (2009) GAUSSIAN 09 (Revision B.01). Gaussian Inc, Wallingford

    Google Scholar 

  34. Zhao Y, Truhlar DG (2004) J Phys Chem A 108:6908–6918

    Article  CAS  Google Scholar 

  35. Chakrabatty AK, Mishra BK, Bhattacharjee D, Deka RC (2012) Mol Phys. doi:10.1080/00268976.2012.747707

    Google Scholar 

  36. Mishra BK, Chakrabatty AK, Deka RC (2013) J Mol Model. doi:10.1007/s00894-013-1762-7

    Google Scholar 

  37. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154–2161

    Article  CAS  Google Scholar 

  38. Curtiss LA, Raghavachari K, Pople JA (1993) J Chem Phys 98:1293–1298

    Article  CAS  Google Scholar 

  39. Kuchitsu K (1998) Structure of free polyatomic molecules basic data, 1. Springer, Berlin, p 58

    Book  Google Scholar 

  40. Zhurko G, Zhurko D (2011) ChemCraft 1.6 Program Revision 1.6, Ivanovo, Russia

  41. Hammond GS (1955) J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  42. Troung NT, Truhlar DG (1990) J Chem Phys 93:1761–1769

    Article  Google Scholar 

  43. Lide DR (ed) (2008–2009) CRC handbook of chemistry and physics, 89th edn. CRC, New York

  44. Good DA, Fransisco JS (1998) J Phys Chem A 102:7143–7148

    Article  CAS  Google Scholar 

  45. Chase MW Jr (1998) JANAF therochemical tables, 3rd edn. J Phys Chem Ref Data 9:1–1951

    Google Scholar 

  46. Pittam DA, Pilcher G (1972) J Chem Soc Faraday Trans 68:2224–2229

    Article  CAS  Google Scholar 

  47. Wiberg KB, Crocker LS, Morgan KM (1991) J Am Chem Soc 113:3447–3450

    Article  CAS  Google Scholar 

  48. Pilcher G, Pell AS, Coleman D (1964) J Trans Faraday Soc 60:499–505

    Article  CAS  Google Scholar 

  49. Manion JA (2002) J Phys Chem Ref Data 31:123–172

    Article  CAS  Google Scholar 

  50. Csontos J, Rolok Z, Das S, Kallay M (2010) J Phys Chem A 114:13093–13103

    Article  CAS  Google Scholar 

  51. Hall HK Jr, Baldt JH (1971) J Am Chem Soc 93:140–145

    Article  Google Scholar 

  52. Barnes DS, Pilcher G (1975) J Chem Thermodynamics 7:377–382

    Article  CAS  Google Scholar 

  53. Wagman DD, Evans WH, Parker VB, Schumm RH, Halow I, Bailey SM, Churney KL, Nuttall RL (1982) J Phys Chem Ref Data 11:Suppl 2

  54. Guthrie JP (1976) Can J Chem 54:202–209

    Article  CAS  Google Scholar 

  55. Laidler KJ (2004) Chemical kinetics, 3rd edn. Pearson Education, New Delhi

    Google Scholar 

  56. Truhlar DG, Chuang YY (2000) J Chem Phys 112:1221–1228

    Article  Google Scholar 

  57. Kaliginedi V, Ali MA, Rajakumar B (2012) Int J Quantum Chem 112:1066–1077

    Article  CAS  Google Scholar 

  58. Wigner EP (1932) Z Phys Chem B19:203–216

    CAS  Google Scholar 

  59. Eckart C (1930) Phys Rev 35:1303–1309

    Article  CAS  Google Scholar 

  60. Shavitt I (1959) J Chem Phys 31:1359–1367

    Article  CAS  Google Scholar 

  61. Johnston HS, Rapp D (1961) J Am Chem Soc 83:1–9

    Article  CAS  Google Scholar 

  62. Papadimitriou VC, Kambanis KG, Lazarou YG, Papagiannakopoulos P (2004) J Phys Chem A 108:2666–2674

    Article  CAS  Google Scholar 

  63. Kurylo MJ, Orkin VL (2003) Chem Rev 103:5049–5076

    Article  CAS  Google Scholar 

  64. Spicer CW, Chapman EG, Finlayson-Pitts BJ, Plastridge RA, Hubbe JM, Fast JD, Berkowitz CM (1998) Nature 394:353–356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

BKM is thankful to University Grants Commission, New Delhi for providing UGC-Dr. D. S. Kothari Post doctoral Fellowship. Authors are also thankful to the reviewers for their constructive suggestions to improve the quality of the manuscripts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Chandra Deka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3187 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, B.K., Chakrabartty, A.K. & Deka, R.C. Theoretical investigation of the gas-phase reactions of CF2ClC(O)OCH3 with the hydroxyl radical and the chlorine atom at 298 K. J Mol Model 19, 3263–3270 (2013). https://doi.org/10.1007/s00894-013-1865-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-1865-1

Keywords

Navigation