Skip to main content
Log in

Computational study on decomposition kinetics of CH 3 CFClO radical

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The present study deals with the decomposition of haloalkoxy radical (CH3CFClO) formed from 1,1-dichloro-1-fluoroethane (HCFC-141b) in the atmosphere. The study is performed using ab-initio quantum mechanical methods. Out of the three plausible pathways of decomposition of the titled species, the one that involved the C–C bond scission and the other occurring via Cl-atom elimination have been considered for detailed study. The geometries of the reactant, products and transition states involved in the decomposition pathways are optimized and characterized at MP2 level of theory using 6-311G(d,p) basis set. Single point energy calculations have been performed at G2(MP2) level of theory. The path involving the Cl-elimination is found to be dominant and found to occur with a barrier height of 3.6 kcal mol − 1 whereas the C–C bond scission path proceeds with a barrier of 10.0 kcal mol − 1. The thermal rate constants for the above two decomposition pathways are evaluated using Canonical Transition State Theory (CTST) and these are found to be 2.9 × 108 s − 1 and 4.3 × 105 s − 1 for Cl-elimination and C–C bond scission respectively at 298 K and 1 atm. pressure. The existence of transition states on the corresponding potential energy surface is ascertained by the occurrence of only one imaginary frequency obtained during the frequency calculation. The Intrinsic Reaction Coordinate (IRC) calculation has also been performed to confirm the smooth connection of the TS to the reactant and the products.

Computational studies using G2(MP2) methods have been performed to investigate the decompositions channels of CH3CFClO radical formed from HCFC-141b in the atmosphere. The results show that Cl elimination pathway is the dominant one. Rate constants of different channels considered have also been evaluated using Canonical Transition State Theory (CTST).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Solomon S 1990 Nature 347 6291

    Article  Google Scholar 

  2. Molina M J and Rowland F S 1974 Nature 249 810

    Article  CAS  Google Scholar 

  3. Rowland F S and Molina M J 1994 Chem. Eng. News. 8 72

    Google Scholar 

  4. Weubbles D J 1983 J. Geophys. Res. 88 1433

    Article  Google Scholar 

  5. Scientific assessment of stratospheric ozone, 1989, Vol II AFEAS Report, World Meteorological Organization, Global Ozone Research and Monitoring Project, Report No-20

  6. Wayne R P 2001 The chemistry of atmospheres (Oxford: Clarendon Press)

    Google Scholar 

  7. Ravishankara A R and Lovejoy E R 1994 J. Chem. Soc. Faraday Trans. 90 2159

    Article  CAS  Google Scholar 

  8. Jonathan S N and Stephanle R S 1992 Environ. Sci. Tech. 26 739

    Article  Google Scholar 

  9. AFEAS (Alternative Fluorocarbons Environmental Acceptability Study) 1997 Production, Sales and Atmospheric Release of Fluorocarbons through 1995 (Washington, DC: AFEAS Program Office)

  10. Shirai T and Makide Y 1998 Chem. Lett. 4 357

    Article  Google Scholar 

  11. Oram D E, Reeves C E, Penkett S A and Fraser P J 1995 Geophys. Res. Lett. 22 2741

    Article  CAS  Google Scholar 

  12. Lee J M, Sturges W T, Penkett S A, Oram D E, Schmidt U, Engel A and Bauer R 1995 Geophys. Res. Lett. 22 1369

    Article  CAS  Google Scholar 

  13. Wu Fuxiang and Carr R W 1995 J. Phys. Chem. 99 3128

    Article  Google Scholar 

  14. DeMore W B, Sander S P, Howard C J, Ravishankara A R, Golden D M, Kolb C E, Hampson R F, Molina M J and Kurylo M J 1992 Chemical kinetics and photochemical data for use in stratospheric modeling, Evaluation Number 10, JPL Publication 92–20

  15. Wallington T J and Nielsen O J 1991 Int. J. Chem. Kinet. 23 785

    Article  CAS  Google Scholar 

  16. Brasseur G P and Orlando J J (ed) 1999 Atmospheric chemistry and global change (New York: Oxford University Press)

    Google Scholar 

  17. Wallington T J, Hurley M D, Francheboud J M, Orlando J J, Tyndall G S, Sehested J, Møgelberg T E and Nielsen O J 1996 J. Phys. Chem. 100 18116

    Article  CAS  Google Scholar 

  18. Zellner R (ed) 1999 Global aspect of atmospheric chemistry (Darmstadt: SteinKopff)

    Google Scholar 

  19. Hehre W J, Radom L, Schleyer P V R and Pople J A 1986 Ab initio Molecular orbital theory (New York: Wiley)

    Google Scholar 

  20. Frisch M J et al 2004 Gaussian 03 (Revision C.02) (Wallingford CT: Gaussian Inc)

    Google Scholar 

  21. Moller C and Plesset M S 1934 Phys. Rev. 46 618

    Article  CAS  Google Scholar 

  22. Hariharan P C and Pople J A 1973 Theo. Chem. Act. 28 213

    Article  CAS  Google Scholar 

  23. Gonzalez C and Schlegel H B 1990 J. Phys. Chem. 94 5523

    Article  CAS  Google Scholar 

  24. Curtiss L A, Raghavachari K and Pople J A 1993 J. Chem. Phys. 98 1293

    Article  CAS  Google Scholar 

  25. Curtiss L A, Redfern P C, Smith B J and Radom Leo 1996 J. Chem. Phys. 104 5148

    Article  CAS  Google Scholar 

  26. Frisch A, Nielsen A B and Holder A J 2003 GaussView Users Manual (Gaussian Inc, PA, USA)

    Google Scholar 

  27. Hou H, Wang B and Gu Y 2000 J. Phys. Chem. A 104 1570

    Article  CAS  Google Scholar 

  28. Scott A P and Radom L 1996 J. Phys. Chem. 100 16502

    Article  CAS  Google Scholar 

  29. Bhatnagar A and Carr R W 1995 J. Phys. Chem. 99 17573

    Article  CAS  Google Scholar 

  30. Truhlar D G, Garrett B C and Klippenstein S J 1996 J. Phys. Chem. 100 12771

    Article  CAS  Google Scholar 

  31. Wigner E P 1977 Z. Phys. Chem. 81 2572

    Article  Google Scholar 

  32. Hou H, Wang B and Gu Y 2000 Phys. Chem. Chem. Phys. 2 61

    Article  CAS  Google Scholar 

  33. Wallington T J, Hurley M D, Ball J C, Ellermann T, Nielsen O J and Sehested J 1994 J. Phys. Chem. 98 5435

    Article  CAS  Google Scholar 

  34. Stevens J E, Khayat R A J, Radkevich O and Brown J 2004 J. Phys. Chem. 108 11354

    Article  CAS  Google Scholar 

  35. Caralp F, Devolder P, Fittschen C, Gomez N, Hippler H, Mereau R, Rayez M T, Striebel F and Viskolcz B 1999 Phys. Chem. Chem. Phys. 1 2935

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HARI JI SINGH.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SINGH, H.J., MISHRA, B.K. Computational study on decomposition kinetics of CH 3 CFClO radical. J Chem Sci 123, 733–741 (2011). https://doi.org/10.1007/s12039-011-0117-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-011-0117-0

Keywords

Navigation