Skip to main content
Log in

Theoretical studies of decomposition kinetics of CF3CCl2O radical

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The unimolecular decomposition reaction of CF3CCl2O radical has been investigated using theoretical methods. Two most important channels of decomposition occurring via C–C bond scission and Cl elimination have been considered during the present investigation. Ab initio quantum mechanical calculations are performed to get optimized structure and vibrational frequencies at DFT and MP2 levels of theory. Energetics are further refined by the application of a modified Gaussian-2 method, G2M(CC,MP2). The thermal rate constants for the decomposition reactions involved are evaluated using Canonical Transition State Theory (CTST) utilizing the ab initio data. Rate constants for C–C bond scission and Cl elimination are found to be 6.7 × 106 and 1.1 × 108 s−1, respectively, at 298 K and 1 atm pressure with an energy barrier of 8.6 and 6.5 kcal/mol, respectively. These values suggest that Cl elimination is the dominant process during the decomposition of the CF3CCl2O radical. Transition states are searched on the potential energy surface of the decomposition reactions involved and are characterized by the existence of only one imaginary frequency (NIMAG = 1) during frequency calculation. The existence of transition states on the corresponding potential energy surface is further ascertained by performing intrinsic reaction coordinate (IRC) calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Solomon S (1990) Nature (Lond) 6291:347–354

    Article  Google Scholar 

  2. Molina MJ, Rowland FS (1974) Nature 249:810–814

    Article  CAS  Google Scholar 

  3. Rowland FS, Molina MJ (1994) Chem Eng News 8:72–76

    Google Scholar 

  4. Weubbles DJ (1983) J Geophys Res 88:1433–1443

    Article  Google Scholar 

  5. Scientific Assessment of Stratospheric Ozone (1989) Vol 11; World Meteorological Organization, Global Ozone Research and Monitoring Project Report No. 20

  6. Wayne RP (2001) Chemistry of atmospheres. Clarendon Press, Oxford

    Google Scholar 

  7. Ravishankara AR, Lovejoy ER (1994) J Chem Soc Faraday Trans 90:2159–2169

    Article  CAS  Google Scholar 

  8. Geirczak T, Talukdar R, Vaghjiani GL, Lovejoy ER, Ravishankara AR (1991) J Geophys Res 96(D3):5001–5011

    Article  Google Scholar 

  9. Scientific Assessment of Stratospheric Ozone (1995) World Meteorological Organization, Global Ozone Research and Monitoring Project

  10. Atkinson R (1990) Atoms Environ Part A 24A:1–41

    CAS  Google Scholar 

  11. Wallington TJ, Hurley MD, Fracheboud JM, Orlando JJ, Tyndall GS, Sehested J, Mogelberg TE, Nielsen OJ (1996) J Phys Chem 100:18116–18122

    Article  CAS  Google Scholar 

  12. Brasseur GP, Orlando JJ (1999) Atmospheric chemistry and global change. Oxford University Press, New York

    Google Scholar 

  13. Zellner R (1999) Global aspect of atmospheric chemistry. Steinkopff Darmstadt, Germany

    Google Scholar 

  14. Fuxiang WU, Carr RW (2002) J Phys Chem A 106:5832–5840

    Article  Google Scholar 

  15. Somnitz H, Zellner R (2001) Phys Chem Chem Phys 3:2352–2364

    Article  CAS  Google Scholar 

  16. Fuxiang WU, Carr RW (2003) J Phys Chem A 107:10733–10742

    Article  Google Scholar 

  17. Stevens JE, Jabo Khayat RA, Radkevich O, Brown J (2004) J Phys Chem A 108:11354–11361

    Article  CAS  Google Scholar 

  18. Hou H, Wang B, Gu Y (2000) J Phys Chem A 104:1570–1575

    Article  CAS  Google Scholar 

  19. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honoda Y, Kitao O, Naki H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VJ, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman GB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, AL-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03; Revision C. 02, Gaussian, Inc, Wallingford

  21. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785–789

    Google Scholar 

  23. Gonzalez C, Schlegel HB (1990) J Chem Phys 94:5523–5527

    Article  CAS  Google Scholar 

  24. Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) J Chem Phys 94:7221–7230

    Article  CAS  Google Scholar 

  25. Mebel AM, Morokuma K, Lin MC (1995) J Chem Phys 103:7414–7421

    Article  CAS  Google Scholar 

  26. Frisch A, Nielsen AB, Holder AJ (2000) Gauss view reference. Gaussian Inc, Wallingford

    Google Scholar 

  27. Bhatnagar A, Carr RW (1995) J Phys Chem 99:17573–17577

    Article  CAS  Google Scholar 

  28. Bhatnagar A, Carr RW (1996) Chem Phys Lett 258:651–656

    Article  CAS  Google Scholar 

  29. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  30. Wigner EP (1932) Z Phys Chem B19:203–216

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the University Grants Commission, New Delhi for providing fellowships to BKM and NKG under its DSA Program to the Department of Chemistry, DDU Gorakhpur University, Gorakhpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari Ji Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, H.J., Mishra, B.K. & Gour, N.K. Theoretical studies of decomposition kinetics of CF3CCl2O radical. Theor Chem Acc 125, 57–64 (2010). https://doi.org/10.1007/s00214-009-0659-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-009-0659-0

Keywords

Navigation