Skip to main content

Advertisement

Log in

Therapeutic Effects of Resveratrol on Ischemia–Reperfusion Injury in the Nervous System

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia–reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nance JR, Golomb MR (2007) Ischemic spinal cord infarction in children without vertebral fracture. Pediatr Neurol 36:209–216

    Article  PubMed  PubMed Central  Google Scholar 

  2. Nour M, Scalzo F, Liebeskind DS (2012) Ischemia-reperfusion injury in stroke. Interv Neurol 1:185–199

    Article  Google Scholar 

  3. Carden DL, Granger DN (2000) Pathophysiology of ischaemia–reperfusion injury. J Pathol 190:255–266

    Article  CAS  PubMed  Google Scholar 

  4. Elshiekh M et al (2015) Ameliorative effect of recombinant human erythropoietin and ischemic preconditioning on renal ischemia reperfusion injury in rats. Nephro-urology Monthly. https://doi.org/10.5812/numonthly.31152

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seifi B et al (2015) Angiotensin II in paraventricular nucleus contributes to sympathoexcitation in renal ischemia–reperfusion injury by AT1 receptor and oxidative stress. J Surg Res 193:361–367

    Article  CAS  PubMed  Google Scholar 

  6. Ramírez-Garza S et al (2018) Health effects of resveratrol: Results from human intervention trials. Nutrients 10:1892

    Article  PubMed Central  CAS  Google Scholar 

  7. Yu W, Fu YC, Wang W (2012) Cellular and molecular effects of resveratrol in health and disease. J Cell Biochem 113:752–759

    Article  CAS  PubMed  Google Scholar 

  8. Bertelli AA, Das DK (2009) Grapes, wines, resveratrol, and heart health. J Cardiovasc Pharmacol 54:468–476

    Article  CAS  PubMed  Google Scholar 

  9. Rafiei RM et al (2011) The effect of grape seed extract on lipid peroxidation duo to ischemia/hypoperfusion in male rat striatum. J Anim Biol 3:37–44

    Google Scholar 

  10. Walle T et al (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382

    Article  CAS  PubMed  Google Scholar 

  11. Salehi B et al (2018) Resveratrol: a double-edged sword in health benefits. Biomedicines 6:91

    Article  CAS  PubMed Central  Google Scholar 

  12. Wenzel E, Somoza V (2005) Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49:472–481

    Article  CAS  PubMed  Google Scholar 

  13. Amri A et al (2012) Administration of resveratrol: what formulation solutions to bioavailability limitations? J Control Release 158:182–193

    Article  CAS  PubMed  Google Scholar 

  14. Neves AR et al (2013) Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int J Nanomed 8:177

    CAS  Google Scholar 

  15. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493

    Article  CAS  PubMed  Google Scholar 

  16. Rauf A et al (2017) A comprehensive review of the health perspectives of resveratrol. Food Funct 8:4284–4305

    Article  CAS  PubMed  Google Scholar 

  17. Katan M, Luft A (2018) Global burden of stroke. In seminars in neurology. Thieme Medical Publishers, New York

    Google Scholar 

  18. Shen M et al (2012) Resveratrol attenuates ischemia/reperfusion injury in neonatal cardiomyocytes and its underlying mechanism. PLoS ONE. https://doi.org/10.1371/journal.pone.0051223

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mao Z-J et al (2019) A Meta-Analysis of resveratrol protects against myocardial ischemia/reperfusion injury: evidence from small animal studies and insight into molecular mechanisms. Oxid Med Cell Longev. https://doi.org/10.1155/2019/5793867

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hascalik S et al (2004) Resveratrol, a red wine constituent polyphenol, protects from ischemia-reperfusion damage of the ovaries. Gynecol Obstet Investig 57:218–223

    Article  CAS  Google Scholar 

  21. Liu F-C, Tsai H-I, Yu H-P (2015) Organ-protective effects of red wine extract, resveratrol, in oxidative stress-mediated reperfusion injury. Oxid Med Cell Longev. https://doi.org/10.1155/2015/568634

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ghosh N et al (2014) Advances in herbal medicine for treatment of ischemic brain injury. Nat Prod Commun. 9:1045–1055

    CAS  PubMed  Google Scholar 

  23. Tomé-Carneiro J et al (2013) Resveratrol and clinical trials: the crossroad from in vitro studies to human evidence. Curr Pharm Des 19:6064–6093

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wu M-Y et al (2018) Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem 46:1650–1667

    Article  CAS  PubMed  Google Scholar 

  25. Collard CD, Gelman S (2001) Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 94:1133–1138

    Article  CAS  PubMed  Google Scholar 

  26. Eltzschig HK, Collard CD (2004) Vascular ischaemia and reperfusion injury. Br Med Bull 70:71–86

    Article  CAS  PubMed  Google Scholar 

  27. Tachibana M et al (2017) Early reperfusion after brain ischemia has beneficial effects beyond rescuing neurons. Stroke 48:2222–2230

    Article  CAS  PubMed  Google Scholar 

  28. Sanderson TH et al (2013) Molecular mechanisms of ischemia–reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol Neurobiol 47:9–23

    Article  CAS  PubMed  Google Scholar 

  29. Molina CA (2011) Reperfusion therapies for acute ischemic stroke: current pharmacological and mechanical approaches. Stroke 42:S16–S19

    Article  PubMed  Google Scholar 

  30. Lin L, Wang X, Yu Z (2016) Ischemia-reperfusion injury in the brain: mechanisms and potential therapeutic strategies. Biochem Pharmacol Open Access. https://doi.org/10.4172/2167-0501.1000213

    Article  Google Scholar 

  31. Wang Y et al (2018) Protecting neurons from cerebral ischemia/reperfusion injury via nanoparticle-mediated delivery of an siRNA to inhibit microglial neurotoxicity. Biomaterials 161:95–105

    Article  CAS  PubMed  Google Scholar 

  32. White BC et al (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179:1–33

    Article  CAS  PubMed  Google Scholar 

  33. Zhuang H et al (2003) Potential mechanism by which resveratrol, a red wine constituent, protects neurons. Ann N Y Acad Sci 993:276–286

    Article  CAS  PubMed  Google Scholar 

  34. Albani D et al (2010) Neuroprotective properties of resveratrol in different neurodegenerative disorders. BioFactors 36:370–376

    Article  CAS  PubMed  Google Scholar 

  35. Bhat KP, Kosmeder JW, Pezzuto JM (2001) Biological effects of resveratrol. Antioxid Redox Signal 3:1041–1064

    Article  CAS  PubMed  Google Scholar 

  36. Lopez MS, Dempsey RJ, Vemuganti R (2015) Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int 89:75–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pallàs M et al (2009) Resveratrol and neurodegenerative diseases: activation of SIRT1 as the potential pathway towards neuroprotection. Curr Neurovasc Res 6:70–81

    Article  PubMed  Google Scholar 

  38. Della-Morte D et al (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1–uncoupling protein 2 pathway. Neuroscience 159:993–1002

    Article  CAS  PubMed  Google Scholar 

  39. Kesherwani V et al (2013) Resveratrol protects spinal cord dorsal column from hypoxic injury by activating Nrf-2. Neuroscience 241:80–88

    Article  CAS  PubMed  Google Scholar 

  40. Khan MM et al (2010) Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 1328:139–151

    Article  CAS  PubMed  Google Scholar 

  41. Yiu EM et al (2015) An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol 262:1344–1353

    Article  CAS  PubMed  Google Scholar 

  42. Agrawal M et al (2011) Ischemic insult induced apoptotic changes in PC12 cells: protection by trans resveratrol. Eur J Pharmacol 666:5–11

    Article  CAS  PubMed  Google Scholar 

  43. Kanthasamy K et al (2011) Neuroprotective effect of resveratrol against methamphetamine-induced dopaminergic apoptotic cell death in a cell culture model of neurotoxicity. Curr Neuropharmacol 9:49–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qian C et al (2017) SIRT1 activation by resveratrol reduces brain edema and neuronal apoptosis in an experimental rat subarachnoid hemorrhage model. Mol Med Rep 16:9627–9635

    Article  CAS  PubMed  Google Scholar 

  45. Feng X et al (2013) Resveratrol inhibits β-amyloid-induced neuronal apoptosis through regulation of SIRT1-ROCK1 signaling pathway. PLoS ONE. https://doi.org/10.1371/journal.pone.0059888

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bai T, Dong D-S, Pei L (2013) Resveratrol mitigates isoflurane-induced neuroapoptosis by inhibiting the activation of the Akt-regulated mitochondrial apoptotic signaling pathway. Int J Mol Med 32:819–826

    Article  CAS  PubMed  Google Scholar 

  47. Hu W et al (2018) Resveratrol protects neuronal cells from isoflurane-induced inflammation and oxidative stress-associated death by attenuating apoptosis via Akt/p38 MAPK signaling. Exp Ther Medi 15:1568–1573

    CAS  Google Scholar 

  48. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sarkaki A et al (2015) Metformin improves anxiety-like behaviors through AMPK-dependent regulation of autophagy following transient forebrain ischemia. Metab Brain Dis 30:1139–1150

    Article  CAS  PubMed  Google Scholar 

  50. Lin T-K et al (2014) Resveratrol partially prevents rotenone-induced neurotoxicity in dopaminergic SH-SY5Y cells through induction of heme oxygenase-1 dependent autophagy. Int J Mol Sci 15:1625–1646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Hu J et al (2017) Resveratrol improves neuron protection and functional recovery through enhancement of autophagy after spinal cord injury in mice. Am J Transl Res 9:4607

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wu Y et al (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19:163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo D et al (2018) Resveratrol protects early brain injury after subarachnoid hemorrhage by activating autophagy and inhibiting apoptosis mediated by the Akt/mTOR pathway. NeuroReport 29:368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Stephenson J et al (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154:204–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gatson JW et al (2013) Resveratrol decreases inflammation in the brain of mice with mild traumatic brain injury. J Trauma Acute Care Surg 74:470–475

    Article  CAS  PubMed  Google Scholar 

  56. Im Jeong S et al (2016) Resveratrol attenuates peripheral and brain inflammation and reduces ischemic brain injury in aged female mice. Neurobiol Aging 44:74–84

    Article  CAS  Google Scholar 

  57. Li X-M et al (2014) Resveratrol pretreatment attenuates the isoflurane-induced cognitive impairment through its anti-inflammation and-apoptosis actions in aged mice. J Mol Neurosci 52:286–293

    Article  CAS  PubMed  Google Scholar 

  58. Liu C et al (2011) Resveratrol improves neuron protection and functional recovery in rat model of spinal cord injury. Brain Res 1374:100–109

    Article  CAS  PubMed  Google Scholar 

  59. Li D et al (2017) Protective effect of resveratrol against nigrostriatal pathway injury in striatum via JNK pathway. Brain Res 1654:1–8

    Article  CAS  PubMed  Google Scholar 

  60. Broussalis E et al (2012) Current therapies in ischemic stroke. Part A. Recent developments in acute stroke treatment and in stroke prevention. Drug Discov Today 17:296–309

    Article  CAS  PubMed  Google Scholar 

  61. Alberts MJ, Ovbiagele B (2007) Current strategies for ischemic stroke prevention: role of multimodal combination therapies. J Neurol 254:1414–1426

    Article  CAS  PubMed  Google Scholar 

  62. Moretti A, Ferrari F, Villa RF (2015) Neuroprotection for ischaemic stroke: current status and challenges. Pharmacol Ther 146:23–34

    Article  CAS  PubMed  Google Scholar 

  63. Falahieh KH et al (2020) Ellagic acid attenuates post-cerebral ischemia and reperfusion behavioral deficits by decreasing brain tissue inflammation in rats. Iran J Basic Med Sci 23:645

    Google Scholar 

  64. Gaire BP (2018) Herbal Medicine in ischemic stroke: challenges and prospective. Chin J Integr Med 24:243–246

    Article  PubMed  Google Scholar 

  65. Gu Y, Chen J, Shen J (2014) Herbal medicines for ischemic stroke: combating inflammation as therapeutic targets. J Neuroimmune Pharmacol 9:313–339

    Article  PubMed  Google Scholar 

  66. Berman AY et al (2017) The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1:35

    Article  PubMed  PubMed Central  Google Scholar 

  67. Faggi L et al (2018) Synergistic association of valproate and resveratrol reduces brain injury in ischemic stroke. Int J Mol Sci 19:172

    Article  PubMed Central  CAS  Google Scholar 

  68. Ishrat T et al (2015) Thioredoxin-interacting protein: a novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol Neurobiol 51:766–778

    Article  CAS  PubMed  Google Scholar 

  69. Clark D et al (2012) Protection against recurrent stroke with resveratrol: endothelial protection. PLoS ONE. https://doi.org/10.1371/journal.pone.0047792

    Article  PubMed  PubMed Central  Google Scholar 

  70. Shin JA et al (2010) Therapeutic effects of resveratrol during acute periods following experimental ischemic stroke. J Neuroimmunol 227:93–100

    Article  CAS  PubMed  Google Scholar 

  71. Wan D et al (2016) Resveratrol provides neuroprotection by inhibiting phosphodiesterases and regulating the cAMP/AMPK/SIRT1 pathway after stroke in rats. Brain Res Bull 121:255–262

    Article  CAS  PubMed  Google Scholar 

  72. Yu P et al (2017) Resveratrol pretreatment decreases ischemic injury and improves neurological function via sonic hedgehog signaling after stroke in rats. Mol Neurobiol 54:212–226

    Article  CAS  PubMed  Google Scholar 

  73. Giarretta I et al (2020) Sonic hedgehog is expressed in human brain arteriovenous malformations and induces arteriovenous malformations in vivo. J Cerebral Blood Flow Metab 41(2):324–335

    Article  Google Scholar 

  74. Chen J et al (2016) Resveratrol improves delayed r-tPA treatment outcome by reducing MMPs. Acta Neurol Scand 134:54–60

    Article  CAS  PubMed  Google Scholar 

  75. Fodor K et al (2018) Long-Term Resveratrol supplementation as a secondary prophylaxis for stroke. Oxid Med Cell Longev. https://doi.org/10.1155/2018/4147320

    Article  PubMed  PubMed Central  Google Scholar 

  76. Heimer L (2012) The human brain and spinal cord: functional neuroanatomy and dissection guide. Springer, New York

    Google Scholar 

  77. Korani MS et al (2014) Protective effects of gallic acid against chronic cerebral hypoperfusion-induced cognitive deficit and brain oxidative damage in rats. Eur J Pharmacol 733:62–67

    Article  CAS  PubMed  Google Scholar 

  78. Yang G-Y, Betz AL (1994) Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke 25:1658–1664

    Article  CAS  PubMed  Google Scholar 

  79. Kuroda S, Siesjö B (1997) Reperfusion damage following focal ischemia: pathophysiology and therapeutic windows. Clin Neurosci (New York, NY) 4:199–212

    CAS  Google Scholar 

  80. Aronowski J, Strong R, Grotta JC (1997) Reperfusion injury: demonstration of brain damage produced by reperfusion after transient focal ischemia in rats. J Cerebral Blood Flow Metab 17:1048–1056

    Article  CAS  Google Scholar 

  81. Ashabi G et al (2015) Pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab Brain Dis 30:747–754

    Article  CAS  PubMed  Google Scholar 

  82. Kizmazoglu C et al (2015) Neuroprotective effect of resveratrol on acute brain ischemia reperfusion injury by measuring annexin V, p53, Bcl-2 levels in rats. J Korean Neurosurg Soc 58:508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. He Q et al (2017) Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction. Int Immunopharmacol 50:208–215

    Article  CAS  PubMed  Google Scholar 

  84. Dou Z et al (2019) Neuroprotection of resveratrol against focal cerebral ischemia/reperfusion injury in mice through a mechanism targeting gut-brain axis. Cell Mol Neurobiol. https://doi.org/10.1007/s10571-019-00687-3

    Article  PubMed  Google Scholar 

  85. Wiginton JG IV et al (2019) Spinal cord reperfusion injury: case report, review of the literature, and future treatment strategies. Cureus. https://doi.org/10.7759/cureus.527910.7759/cureus.5279

    Article  PubMed  PubMed Central  Google Scholar 

  86. Antwi P et al (2018) “White cord syndrome” of acute hemiparesis after posterior cervical decompression and fusion for chronic cervical stenosis. World Neurosurg 113:33–36

    Article  PubMed  Google Scholar 

  87. Manzanero S, Santro T, Arumugam TV (2013) Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem Int 62:712–718

    Article  CAS  PubMed  Google Scholar 

  88. Al Dera H (2017) Neuroprotective effect of resveratrol against late cerebral ischemia reperfusion induced oxidative stress damage involves upregulation of osteopontin and inhibition of interleukin-1beta. J Physiol Pharmacol 68:47–56

    CAS  PubMed  Google Scholar 

  89. Fang L et al (2015) Resveratrol alleviates nerve injury after cerebral ischemia and reperfusion in mice by inhibiting inflammation and apoptosis. Int J Clin Exp Med 8:3219

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ren J et al (2011) Resveratrol pretreatment attenuates cerebral ischemic injury by upregulating expression of transcription factor Nrf2 and HO-1 in rats. Neurochem Res 36:2352

    Article  CAS  PubMed  Google Scholar 

  91. Fu S et al (2018) Resveratrol, an antioxidant, protects spinal cord injury in rats by suppressing MAPK pathway. Saudi J Biol Scie 25:259–266

    Article  CAS  Google Scholar 

  92. Sakata Y et al (2010) Resveratrol protects against experimental stroke: putative neuroprotective role of heme oxygenase 1. Exp Neurol 224:325–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Araujo JA, Zhang M, Yin F (2012) Heme oxygenase-1, oxidation, inflammation, and atherosclerosis. Front Pharmacol 3:119

    Article  PubMed  PubMed Central  Google Scholar 

  94. Paine A et al (2010) Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol 80:1895–1903

    Article  CAS  PubMed  Google Scholar 

  95. Ighodaro O, Akinloye O (2018) First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 54:287–293

    Article  Google Scholar 

  96. Tayfur K, Koramaz İ (2020) The effect of combined resveratrol and nitric oxide treatment on the prevention of spinal cord ischemia-reperfusion injury: an experimental study. Turkish J Vasc Surg 29:1–6

    Article  Google Scholar 

  97. Yang H et al (2016) Resveratrol pretreatment protected against cerebral ischemia/reperfusion injury in rats via expansion of T regulatory cells. J Stroke Cerebrovasc Dis 25:1914–1921

    Article  PubMed  Google Scholar 

  98. Liesz A et al (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15:192

    Article  CAS  PubMed  Google Scholar 

  99. Sakaguchi S et al (2009) Regulatory T cells: how do they suppress immune responses? Int Immunol 21:1105–1111

    Article  CAS  PubMed  Google Scholar 

  100. Li W et al (2015) Resveratrol ameliorates oxidative stress and inhibits aquaporin 4 expression following rat cerebral ischemia-reperfusion injury. Mol Med Rep 12:7756–7762

    Article  CAS  PubMed  Google Scholar 

  101. Kiziltepe U et al (2004) Resveratrol, a red wine polyphenol, protects spinal cord from ischemia-reperfusion injury. J Vasc Surg 40:138–145

    Article  PubMed  Google Scholar 

  102. Jiang L et al (2017) Roles of the Nrf2/HO-1 pathway in the anti-oxidative stress response to ischemia-reperfusion brain injury in rats. Eur Rev Med Pharmacol Sci 21:1532–1540

    PubMed  Google Scholar 

  103. Abdel-Aleem GA et al (2016) Neuroprotective effect of resveratrol against brain ischemia reperfusion injury in rats entails reduction of DJ-1 protein expression and activation of PI3K/Akt/GSK3b survival pathway. Arch Physiol Biochem 122:200–213

    Article  CAS  PubMed  Google Scholar 

  104. Clements CM et al (2006) DJ-1, a cancer-and Parkinson’s disease-associated protein, stabilizes the antioxidant transcriptional master regulator Nrf2. Proc Natl Acad Sci 103:15091–15096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Malhotra D et al (2008) Decline in NRF2-regulated antioxidants in chronic obstructive pulmonary disease lungs due to loss of its positive regulator, DJ-1. Am J Respir Crit Care Med 178:592–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Lu X et al (2020) Reperfusion combined with intraarterial administration of resveratrol-loaded nanoparticles improved cerebral ischemia–reperfusion injury in rats. Nanomed Nanotechnol Biol Med 28:102–208

    Article  CAS  Google Scholar 

  107. Slevin M et al (2006) Can angiogenesis be exploited to improve stroke outcome? Mechanisms and therapeutic potential. Clin Sci 111:171–183

    Article  CAS  Google Scholar 

  108. Beck H, Plate KH (2009) Angiogenesis after cerebral ischemia. Acta Neuropathol 117:481–496

    Article  PubMed  Google Scholar 

  109. Fan Y, Yang G-Y (2007) Therapeutic angiogenesis for brain ischemia: a brief review. J Neuroimmune Pharmacol 2:284–289

    Article  PubMed  Google Scholar 

  110. Kusaka N et al (2005) Enhanced brain angiogenesis in chronic cerebral hypoperfusion after administration of plasmid human vascular endothelial growth factor in combination with indirect vasoreconstructive surgery. J Neurosurg 103:882–890

    Article  CAS  PubMed  Google Scholar 

  111. Bellomo M et al (2003) Enhancement of expression of vascular endothelial growth factor after adeno-associated virus gene transfer is associated with improvement of brain ischemia injury in the gerbil. Pharmacol Res 48:309–317

    Article  CAS  PubMed  Google Scholar 

  112. Dong W et al (2008) Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors. J Vasc Surg 48:709–714

    Article  PubMed  Google Scholar 

  113. Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  CAS  PubMed  Google Scholar 

  114. Mizushima N et al (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang X et al (2013) Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy 9:1321–1333

    Article  CAS  PubMed  Google Scholar 

  116. Sadoshima J (2008) The role of autophagy during ischemia/reperfusion. Autophagy 4:402–403

    Article  PubMed  Google Scholar 

  117. Li H et al (2014) Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood–brain barrier integrity during experimental cerebral ischemia–reperfusion injury. Transl Stroke Res 5:618–626

    Article  PubMed  Google Scholar 

  118. Chiu H-W et al (2016) Far-infrared promotes burn wound healing by suppressing NLRP3 inflammasome caused by enhanced autophagy. J Mol Med 94:809–819

    Article  CAS  PubMed  Google Scholar 

  119. Chang YP et al (2015) Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J Cell Physiol 230:1567–1579

    Article  CAS  PubMed  Google Scholar 

  120. Wu J et al (2016) The role of resveratrol-induced mitophagy/autophagy in peritoneal mesothelial cells inflammatory injury via NLRP3 inflammasome activation triggered by mitochondrial ROS. Exp Cell Res 341:42–53

    Article  CAS  PubMed  Google Scholar 

  121. Dorweiler B et al (2007) Ischemia-reperfusion injury. Eur J Trauma Emerg Surg 33:600–612

    Article  PubMed  Google Scholar 

  122. Eefting F et al (2004) Role of apoptosis in reperfusion injury. Cardiovasc Res 61:414–426

    Article  CAS  PubMed  Google Scholar 

  123. Zhao Z-Q et al (2000) Reperfusion induces myocardial apoptotic cell death. Cardiovasc Res 45:651–660

    Article  CAS  PubMed  Google Scholar 

  124. Lam TT, Abler AS, Tso M (1999) Apoptosis and caspases after ischemia-reperfusion injury in rat retina. Investig Ophthalmol Vis Sci 40:967–975

    CAS  Google Scholar 

  125. Jahangiri HM et al (2020) Gallic acid affects blood-brain barrier permeability, behaviors, hippocampus local EEG, and brain oxidative stress in ischemic rats exposed to dusty particulate matter. Environ Sci Pollut Res 27:5281–5292

    Article  CAS  Google Scholar 

  126. Chen X et al (2012) Ischemia–reperfusion impairs blood–brain barrier function and alters tight junction protein expression in the ovine fetus. Neuroscience 226:89–100

    Article  CAS  PubMed  Google Scholar 

  127. Suzuki Y, Nagai N, Umemura K (2016) A review of the mechanisms of blood-brain barrier permeability by tissue-type plasminogen activator treatment for cerebral ischemia. Front Cell Neurosci 10:2

    Article  PubMed  PubMed Central  Google Scholar 

  128. Yang and A. Lorris Betz, (1994) Reperfusion-induced injury to the blood-brain barrier after middle cerebral artery occlusion in rats. Stroke 25:1658–1664

    Article  Google Scholar 

  129. Khoshnam SE et al (2018) Vanillic acid attenuates cerebral hyperemia, blood-brain barrier disruption and anxiety-like behaviors in rats following transient bilateral common carotid occlusion and reperfusion. Metab Brain Dis 33:785–793

    Article  CAS  PubMed  Google Scholar 

  130. Rosenberg G, Estrada E, Dencoff J (1998) Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Stroke 29:2189–2194

    Article  CAS  PubMed  Google Scholar 

  131. Fujimura M et al (1999) Early appearance of activated matrix metalloproteinase-9 and blood–brain barrier disruption in mice after focal cerebral ischemia and reperfusion. Brain Res 842:92–100

    Article  CAS  PubMed  Google Scholar 

  132. Wei H et al (2015) Resveratrol attenuates the blood-brain barrier dysfunction by regulation of the MMP-9/TIMP-1 balance after cerebral ischemia reperfusion in rats. J Mol Neurosci 55:872–879

    Article  CAS  PubMed  Google Scholar 

  133. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477:267–283

    Article  CAS  PubMed  Google Scholar 

  134. Orsu P, Murthy B, Akula A (2013) Cerebroprotective potential of resveratrol through anti-oxidant and anti-inflammatory mechanisms in rats. J Neural Transm 120:1217–1223

    Article  CAS  PubMed  Google Scholar 

  135. Girbovan C, Plamondon H (2015) Resveratrol downregulates type-1 glutamate transporter expression and microglia activation in the hippocampus following cerebral ischemia reperfusion in rats. Brain Res 1608:203–214

    Article  CAS  PubMed  Google Scholar 

  136. Chang C et al (2018) Resveratrol protects hippocampal neurons against cerebral ischemia-reperfusion injury via modulating JAK/ERK/STAT signaling pathway in rats. J Neuroimmunol 315:9–14

    Article  CAS  PubMed  Google Scholar 

  137. Li Z et al (2016) Resveratrol protects CA1 neurons against focal cerebral ischemic reperfusion-induced damage via the ERK-CREB signaling pathway in rats. Pharmacol Biochem Behav 146:21–27

    Article  PubMed  CAS  Google Scholar 

  138. Lin Y et al (2013) Neuroprotective effect of resveratrol on ischemia/reperfusion injury in rats through TRPC6/CREB pathways. J Mol Neurosci 50:504–513

    Article  CAS  PubMed  Google Scholar 

  139. Wang Q et al (2006) Apocynin protects against global cerebral ischemia–reperfusion-induced oxidative stress and injury in the gerbil hippocampus. Brain Res 1090:182–189

    Article  CAS  PubMed  Google Scholar 

  140. Liu S, Sun J, Li Y (2016) The neuroprotective effects of resveratrol preconditioning in transient global cerebral ischemia-reperfusion in mice. Turk Neurosurg 26:550–555

    PubMed  Google Scholar 

  141. Gao D et al (2006) Resveratrol reduces the elevated level of MMP-9 induced by cerebral ischemia–reperfusion in mice. Life Sci 78:2564–2570

    Article  CAS  PubMed  Google Scholar 

  142. Kaplan S et al (2005) Resveratrol, a natural red wine polyphenol, reduces ischemia-reperfusion–induced spinal cord injury. Ann Thorac Surg 80:2242–2249

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Adelipour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkaki, A., Rashidi, M., Ranjbaran, M. et al. Therapeutic Effects of Resveratrol on Ischemia–Reperfusion Injury in the Nervous System. Neurochem Res 46, 3085–3102 (2021). https://doi.org/10.1007/s11064-021-03412-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-021-03412-z

Keywords

Navigation