Skip to main content

Advertisement

Log in

Metformin improves anxiety-like behaviors through AMPK-dependent regulation of autophagy following transient forebrain ischemia

  • Research Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Stroke is one of the main threats to the public health worldwide. Metformin, an anti-diabetic drug, is an activator of AMP-activated protein kinase (AMPK). Metformin plays an important role on improving behavior in neurodegenerative diseases through diverse pathways. In the current study we aimed to investigate the probable effects of metformin on anxiety and autophagy pathway in global cerebral ischemia. Rats were divided into seven groups; Sham, ischemia (I/R), metformin (met), compound c (CC), CC+ischemia, met+ischemia, met+CC+ischemia. Metformin was pretreated for 2 weeks and CC administrated half an hour before global cerebral ischemia. Blood glucose, body weight, sensorimotor scores, elevated plus maze and open field test were evaluated after ischemia. Autophagy related factors were measured by Western blot and immunofluorescent assay in hippocampus of rats. Based on our results, pretreatment of rats by metformin improved sensory motor signs, anxiolytic behavior and locomotion in ischemic rats. CC injection in I/R rats attenuated the therapeutic effects of metformin. Autophagy factors such as light chain 3B, Atg7, Atg5-12 and beclin-1 decreased in ischemic rats compared to the sham group (P < 0.001 in all proteins). Level of autophagic factors increased in metformin pretreated rats compared to global cerebral ischemia (P < 0.001 in all proteins). These data indicated that the beneficial role of metformin in behavior and autophagy flux mediates via AMPK. Our results recommended that metformin therapy could improve psychological disorders and movement disability following I/R and profound understanding of AMPK-dependent autophagy would enhance its development as a promising target for intracellular pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Appenrodt E, Schnabel R, Schwarzberg H (1998) Vasopressin administration modulates anxiety-related behavior in rats. Physiol Behav 64:543–547

    Article  CAS  PubMed  Google Scholar 

  • Ashabi G, Ahmadiani A, Abdi A, Abraki SB, Khodagholi F (2013) Time course study of Abeta formation and neurite outgrowth disruption in differentiated human neuroblastoma cells exposed to H2O2: protective role of autophagy. Toxicol In Vitro 27:1780–1788

    Article  CAS  PubMed  Google Scholar 

  • Ashabi G, Khalaj L, Khodagholi F, Goudarzvand M, Sarkaki (2014a) A pre-treatment with metformin activates Nrf2 antioxidant pathways and inhibits inflammatory responses through induction of AMPK after transient global cerebral ischemia. Metab Brain Dis

  • Ashabi G, Khodagholi F, Khalaj L, Goudarzvand M, Nasiri M (2014b) Activation of AMP-activated protein kinase by metformin protects against global cerebral ischemia in male rats: interference of AMPK/PGC-1alpha pathway. Metab Brain Dis 29:47–58

    Article  CAS  PubMed  Google Scholar 

  • Bowen SE, Wiley JL, Balster RL (1996) The effects of abused inhalants on mouse behavior in an elevated plus-maze. Eur J Pharmacol 312:131–136

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brown ES, Rush AJ, McEwen BS (1999) Hippocampal remodeling and damage by corticosteroids: implications for mood disorders. Neuropsychopharmacology 21:474–484

    Article  CAS  PubMed  Google Scholar 

  • Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ (2008) Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes 57:696–705

    Article  CAS  PubMed  Google Scholar 

  • Carchman EH, Whelan S, Loughran P, Mollen K, Stratamirovic S, Shiva S, Rosengart MR, Zuckerbraun BS (2013) Experimental sepsis-induced mitochondrial biogenesis is dependent on autophagy, TLR4, and TLR9 signaling in liver. FASEB J 27:4703–4711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chandler MJ, DeLeo J, Carney JM (1985) An unanesthetized-gerbil model of cerebral ischemia-induced behavioral changes. J Pharmacol Methods 14:137–146

    Article  CAS  PubMed  Google Scholar 

  • Espejo EF (1997) Effects of weekly or daily exposure to the elevated plus-maze in male mice. Behav Brain Res 87:233–238

    Article  CAS  PubMed  Google Scholar 

  • Forslin Aronsson S, Spulber S, Popescu LM, Winblad B, Post C, Oprica M, Schultzberg M (2006) alpha-Melanocyte-stimulating hormone is neuroprotective in rat global cerebral ischemia. Neuropeptides 40:65–75

    Article  CAS  PubMed  Google Scholar 

  • Gage WH, Sleik RJ, Polych MA, McKenzie NC, Brown LA (2003) The allocation of attention during locomotion is altered by anxiety. Exp Brain Res 150:385–394

    PubMed  Google Scholar 

  • Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627–634, discussion 635

    Article  CAS  PubMed  Google Scholar 

  • Girbovan C, Morin L, Plamondon H (2012) Repeated resveratrol administration confers lasting protection against neuronal damage but induces dose-related alterations of behavioral impairments after global ischemia. Behav Pharmacol 23:1–13

    Article  CAS  PubMed  Google Scholar 

  • Grishchuk Y, Ginet V, Truttmann AC, Clarke PG, Puyal J (2011) Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy 7:1115–1131

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Yu W, Sun D, Wang J, Li C, Zhang R, Babcock SA, Li Y, Liu M, Ma M, Shen M, Zeng C, Li N, He W, Zou Q, Zhang Y, Wang H (2014) A novel protective mechanism for mitochondrial aldehyde dehydrogenase (ALDH2) in type i diabetes-induced cardiac dysfunction: Role of AMPK-regulated autophagy. Biochim Biophys Acta 1852:319–331

    Article  PubMed  Google Scholar 

  • Hadley G, Papadakis M, Buchan AM (2014) A method of inducing global cerebral ischemia. Methods Mol Biol 1135:111–120

    Article  CAS  PubMed  Google Scholar 

  • Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L, Shi JQ, Zhang YD, Tan L (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischaemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol 171:3146–3157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khang R, Park C, Shin JH (2014) The biguanide metformin alters phosphoproteomic profiling in mouse brain. Neurosci Lett 579:145–150

    Article  CAS  PubMed  Google Scholar 

  • Krause GS, Kumar K, White BC, Aust SD, Wiegenstein JG (1986) Ischemia, resuscitation, and reperfusion: mechanisms of tissue injury and prospects for protection. Am Heart J 111:768–780

    Article  CAS  PubMed  Google Scholar 

  • Lennox R, Porter DW, Flatt PR, Holscher C, Irwin N, Gault VA (2014) Comparison of the independent and combined effects of sub-chronic therapy with metformin and a stable GLP-1 receptor agonist on cognitive function, hippocampal synaptic plasticity and metabolic control in high-fat fed mice. Neuropharmacology 86:22–30

    Article  CAS  PubMed  Google Scholar 

  • Li J, Benashski SE, Venna VR, McCullough LD (2010) Effects of metformin in experimental stroke. Stroke 41:2645–2652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li W, Huang R, Shetty RA, Thangthaeng N, Liu R, Chen Z, Sumien N, Rutledge M, Dillon GH, Yuan F, Forster MJ, Simpkins JW, Yang SH (2013) Transient focal cerebral ischemia induces long-term cognitive function deficit in an experimental ischemic stroke model. Neurobiol Dis 59:18–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Y, Tang G, Li Y, Wang Y, Chen X, Gu X, Zhang Z, Yang GY (2014) Metformin attenuates blood–brain barrier disruption in mice following middle cerebral artery occlusion. J Neuroinflammation 11:177

    Article  PubMed Central  PubMed  Google Scholar 

  • Ma TC, Buescher JL, Oatis B, Funk JA, Nash AJ, Carrier RL, Hoyt KR (2007) Metformin therapy in a transgenic mouse model of Huntington’s disease. Neurosci Lett 411:98–103

    Article  CAS  PubMed  Google Scholar 

  • Meijer AJ, Codogno P (2007) AMP-activated protein kinase and autophagy. Autophagy 3:238–240

    Article  CAS  PubMed  Google Scholar 

  • Menard J, Treit D (1998) The septum and the hippocampus differentially mediate anxiolytic effects of R(+)-8-OH-DPAT. Behav Pharmacol 9:93–101

    Article  CAS  PubMed  Google Scholar 

  • Miller JL, Linville TD, Dykens EM (2013) Effects of metformin in children and adolescents with Prader-Willi syndrome and early-onset morbid obesity: a pilot study. J Pediatr Endocrinol Metab 27:23–29

    Google Scholar 

  • Milot MR, Plamondon H (2009) Time-dependent effects of global cerebral ischemia on anxiety, locomotion, and habituation in rats. Behav Brain Res 200:173–180

    Article  PubMed  Google Scholar 

  • Mrsulja BB, Mrsulja BJ, Ito U, Walker JT Jr, Spatz M, Klatzo I (1975) Experimental cerebral ischemia in Mongolian gerbils. II. Changes in carbohydrates. Acta Neuropathol 33:91–103

    Article  CAS  PubMed  Google Scholar 

  • Niimura M, Takagi N, Takagi K, Mizutani R, Ishihara N, Matsumoto K, Funakoshi H, Nakamura T, Takeo S (2006) Prevention of apoptosis-inducing factor translocation is a possible mechanism for protective effects of hepatocyte growth factor against neuronal cell death in the hippocampus after transient forebrain ischemia. J Cereb Blood Flow Metab 26:1354–1365

    Article  CAS  PubMed  Google Scholar 

  • Paiva MA, Goncalves LM, Providencia LA, Davidson SM, Yellon DM, Mocanu MM (2010) Transitory activation of AMPK at reperfusion protects the ischaemic-reperfused rat myocardium against infarction. Cardiovasc Drugs Ther 24:25–32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paiva MA, Rutter-Locher Z, Goncalves LM, Providencia LA, Davidson SM, Yellon DM, Mocanu MM (2011) Enhancing AMPK activation during ischemia protects the diabetic heart against reperfusion injury. Am J Physiol Heart Circ Physiol 300:H2123–H2134

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patil SP, Jain PD, Ghumatkar PJ, Tambe R, Sathaye S (2014) Neuroprotective effect of metformin in MPTP-induced Parkinson’s disease in mice. Neuroscience 277:747–754

    Article  CAS  PubMed  Google Scholar 

  • Paul SL, Srikanth VK, Thrift AG (2007) The large and growing burden of stroke. Curr Drug Targets 8:786–793

    Article  CAS  PubMed  Google Scholar 

  • Pietrelli A, Lopez-Costa J, Goni R, Brusco A, Basso N (2011) Aerobic exercise prevents age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old rats. Neuroscience 202:252–266

    Article  PubMed  Google Scholar 

  • Pillow BH, Flavell JH (1985) Intellectual realism: the role of children’s interpretations of pictures and perceptual verbs. Child Dev 56:664–670

    Article  CAS  PubMed  Google Scholar 

  • Pintana H, Apaijai N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC (2012) Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci 91:409–414

    Article  CAS  PubMed  Google Scholar 

  • Poels J, Spasic MR, Callaerts P, Norga KK (2009) Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy. Bioessays 31:944–952

    Article  CAS  PubMed  Google Scholar 

  • Polajnar M, Zerovnik E (2014) Impaired autophagy: a link between neurodegenerative and neuropsychiatric diseases. J Cell Mol Med 18:1705–1711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prakash R, Li W, Qu Z, Johnson MA, Fagan SC, Ergul A (2013) Vascularization pattern after ischemic stroke is different in control versus diabetic rats: relevance to stroke recovery. Stroke 44:2875–2882

  • Preitner F, Muzzin P, Revelli JP, Seydoux J, Galitzky J, Berlan M, Lafontan M, Giacobino JP (1998) Metabolic response to various beta-adrenoceptor agonists in beta3-adrenoceptor knockout mice: evidence for a new beta-adrenergic receptor in brown adipose tissue. Br J Pharmacol 124:1684–1688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267–272

    Article  CAS  PubMed  Google Scholar 

  • Rami A, Kogel D (2008) Apoptosis meets autophagy-like cell death in the ischemic penumbra: Two sides of the same coin? Autophagy 4:422–426

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Navarro JA, Rodriguez L, Casarejos MJ, Solano RM, Gomez A, Perucho J, Cuervo AM, Garcia de Yebenes J, Mena MA (2010) Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 39:423–438

    Article  CAS  PubMed  Google Scholar 

  • Sarti C, Pantoni L, Bartolini L, Inzitari D (2002) Persistent impairment of gait performances and working memory after bilateral common carotid artery occlusion in the adult Wistar rat. Behav Brain Res 136:13–20

    Article  PubMed  Google Scholar 

  • Shaerzadeh F, Motamedi F, Minai-Tehrani D, Khodagholi F (2014) Monitoring of neuronal loss in the hippocampus of Abeta-injected rat: autophagy, mitophagy, and mitochondrial biogenesis stand against apoptosis. Neuromol Med 16:175–190

    Article  CAS  Google Scholar 

  • Shehata M, Inokuchi K (2014) Does autophagy work in synaptic plasticity and memory? Rev Neurosci 25:543–557

    Article  CAS  PubMed  Google Scholar 

  • Skutella T, Probst JC, Renner U, Holsboer F, Behl C (1998) Corticotropin-releasing hormone receptor (type I) antisense targeting reduces anxiety. Neuroscience 85:795–805

    Article  CAS  PubMed  Google Scholar 

  • Spencer SJ, Auer RN, Pittman QJ (2006) Rat neonatal immune challenge alters adult responses to cerebral ischaemia. J Cereb Blood Flow Metab 26:456–467

    Article  PubMed  Google Scholar 

  • Takahashi N, Shibata R, Ouchi N, Sugimoto M, Murohara T, Komori K (2015) Metformin stimulates ischemia-induced revascularization through an eNOS dependent pathway in the ischemic hindlimb mice model. J Vasc Surg 61:489–496

    Article  PubMed  Google Scholar 

  • Tang P, Hou H, Zhang L, Lan X, Mao Z, Liu D, He C, Du H (2013) Autophagy reduces neuronal damage and promotes locomotor recovery via inhibition of apoptosis after spinal cord injury in rats. Mol Neurobiol 49:276–287

    Article  PubMed  Google Scholar 

  • Taylor TN, Davis PH, Torner JC, Holmes J, Meyer JW, Jacobson MF (1996) Lifetime cost of stroke in the United States. Stroke 27:1459–1466

    Article  CAS  PubMed  Google Scholar 

  • Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F (2011) Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond) 122:253–270

    Article  Google Scholar 

  • Wang D, Corbett D (1990) Cerebral ischemia, locomotor activity and spatial mapping. Brain Res 533:78–82

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Guan YF, Du H, Zhai QW, Su DF, Miao CY (2011) Induction of autophagy contributes to the neuroprotection of nicotinamide phosphoribosyltransferase in cerebral ischemia. Autophagy 8:77–87

    Article  Google Scholar 

  • Wang PR, Wang JS, Zhang C, Song XF, Tian N, Kong LY (2013) Huang-Lian-Jie-Du-Decotion induced protective autophagy against the injury of cerebral ischemia/reperfusion via MAPK-mTOR signaling pathway. J Ethnopharmacol 149:270–280

    Article  PubMed  Google Scholar 

  • Wen YD, Sheng R, Zhang LS, Han R, Zhang X, Zhang XD, Han F, Fukunaga K, Qin ZH (2008) Neuronal injury in rat model of permanent focal cerebral ischemia is associated with activation of autophagic and lysosomal pathways. Autophagy 4:762–769

    Article  CAS  PubMed  Google Scholar 

  • Winter B, Juckel G, Viktorov I, Katchanov J, Gietz A, Sohr R, Balkaya M, Hortnagl H, Endres M (2005) Anxious and hyperactive phenotype following brief ischemic episodes in mice. Biol Psychiatry 57:1166–1175

    Article  PubMed  Google Scholar 

  • Xia DY, Li W, Qian HR, Yao S, Liu JG, Qi XK (2013) Ischemia preconditioning is neuroprotective in a rat cerebral ischemic injury model through autophagy activation and apoptosis inhibition. Braz J Med Biol Res 46:580–588

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yu OH, Yin H, Azoulay L (2015) The combination of DPP-4 inhibitors versus sulfonylureas with metformin after failure of first-line treatment in the risk for major cardiovascular events and death. Can J Diabetes. doi:10.1016/j.jcjd.2015.02.002

  • Zhao Z, Han F, Yang S, Wu J, Zhan W (2014) Oxamate-mediated inhibition of lactate dehydrogenase induces protective autophagy in gastric cancer cells: involvement of the Akt-mTOR signaling pathway. Cancer Lett 358:17–26

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was extracted as a part of Ghorbangol Ashabi’s Ph.D thesis. The study was financially supported by research affairs of Ahvaz Jundishapur University of Medical Sciences (grant No. APRC-93-05) and was performed in Ahvaz Physiology Research Center. Authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghorbangol Ashabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkaki, A., Farbood, Y., Badavi, M. et al. Metformin improves anxiety-like behaviors through AMPK-dependent regulation of autophagy following transient forebrain ischemia. Metab Brain Dis 30, 1139–1150 (2015). https://doi.org/10.1007/s11011-015-9677-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-015-9677-x

Keyword

Navigation