Skip to main content
Log in

Thioredoxin-Interacting Protein: a Novel Target for Neuroprotection in Experimental Thromboembolic Stroke in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

An Erratum to this article was published on 11 December 2014

Abstract

Redox imbalance in the brain significantly contributes to ischemic stroke pathogenesis, but antioxidant therapies have failed in clinical trials. Activation of endogenous defense mechanisms may provide better protection against stroke-induced oxidative injury. TXNIP (thioredoxin-interacting protein) is an endogenous inhibitor of thioredoxin (TRX), a key antioxidant system. We hypothesize that TXNIP inhibition attenuates redox imbalance and inflammation and provides protection against a clinically relevant model of embolic stroke. Male TXNIP-knockout (TKO), wild-type (WT), and WT mice treated with a pharmacological inhibitor of TXNIP, resveratrol (RES; 5 mg/kg body weight), were subjected to embolic middle cerebral artery occlusion (eMCAO). Behavior outcomes were monitored using neurological deficits score and grip strength meter at 24 h after eMCAO. Expression of oxidative, inflammatory, and apoptotic markers was analyzed by Western blot, immunohistochemistry, and slot blot at 24 h post-eMCAO. Our result showed that ischemic injury increases TXNIP in WT mice and that RES inhibits TXNIP expression and protects the brain against ischemic damage. TKO and RES-treated mice exhibited a 39.26 and 41.11 % decrease in infarct size and improved neurological score and grip strength compared to WT mice after eMCAO. Furthermore, the levels of TRX, nitrotyrosine, NOD-like receptor protein (NLRP3), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and activations of caspase-1, caspase-3, and poly-ADP-ribose polymerase (PARP) were significantly (P < 0.05) attenuated in TKO and RES-treated mice. The present study suggests that TXNIP is contributing to acute ischemic stroke through redox imbalance and inflammasome activation and inhibition of TXNIP may provide a new target for therapeutic interventions. This study also affirms the importance of the antioxidant effect of RES on the TRX/TXNIP system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PARP:

Poly-ADP-ribose polymerase

ROD:

Relative optical density

TRX:

Thioredoxin

TXNIP:

Thioredoxin-interacting protein

eMCAO:

Embolic middle cerebral artery occlusion

NLRP3:

NOD-like receptor pyrin domain containing-3

IL-1β:

Interleukin-1β

TNF-α:

Tumor necrosis factor-α

RES:

Resveratrol

ROS:

Reactive oxygen species

NT:

Nitrotyrosine

WT:

Wild type

TKO:

TXNIP-knockout

TTC:

2, 3, 5-Triphenyltetrazolium chloride

References

  1. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220. doi:10.1161/CIR.0b013e31823ac046

    Article  PubMed  Google Scholar 

  2. Patenaude A, Murthy MR, Mirault ME (2005) Emerging roles of thioredoxin cycle enzymes in the central nervous system. Cell Mol Life Sci : CMLS 62(10):1063–1080. doi:10.1007/s00018-005-4541-5

    Article  CAS  PubMed  Google Scholar 

  3. Aon-Bertolino ML, Romero JI, Galeano P, Holubiec M, Badorrey MS, Saraceno GE, Hanschmann EM, Lillig CH, Capani F (2011) Thioredoxin and glutaredoxin system proteins—immunolocalization in the rat central nervous system. Biochim Biophys Acta 1810(1):93–110. doi:10.1016/j.bbagen.2010.06.011

    Article  CAS  PubMed  Google Scholar 

  4. Lappalainen Z, Lappalainen J, Oksala NK, Laaksonen DE, Khanna S, Sen CK, Atalay M (2009) Diabetes impairs exercise training-associated thioredoxin response and glutathione status in rat brain. J Appl Physiol 106(2):461–467. doi:10.1152/japplphysiol.91252.2008

    Article  CAS  PubMed  Google Scholar 

  5. Hermann DM, Matter CM (2007) Tissue plasminogen activator-induced reperfusion injury after stroke revisited. Circulation 116(4):363–365. doi:10.1161/CIRCULATIONAHA.107.712380

    Article  PubMed  Google Scholar 

  6. Kelly PJ, Morrow JD, Ning M, Koroshetz W, Lo EH, Terry E, Milne GL, Hubbard J, Lee H, Stevenson E, Lederer M, Furie KL (2008) Oxidative stress and matrix metalloproteinase-9 in acute ischemic stroke: the Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) study. Stroke J Cereb Circ 39(1):100–104. doi:10.1161/STROKEAHA.107.488189

    Article  CAS  Google Scholar 

  7. Nakamura H, Nakamura K, Yodoi J (1997) Redox regulation of cellular activation. Annu Rev Immunol 15:351–369

    Article  CAS  PubMed  Google Scholar 

  8. Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. The EMBO journal 17(9):2596–2606. doi:10.1093/emboj/17.9.2596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Watson WH, Yang X, Choi YE, Jones DP, Kehrer JP (2004) Thioredoxin and its role in toxicology. Toxicol Sci Off J Soc Toxicol 78(1):3–14. doi:10.1093/toxsci/kfh050

    Article  CAS  Google Scholar 

  10. Mohamed IN, Hafez SS, Fairaq A, Ergul A, Imig JD, El-Remessy AB (2014) Thioredoxin-interacting protein is required for endothelial NLRP3 inflammasome activation and cell death in a rat model of high-fat diet. Diabetologia 57(2):413–423. doi:10.1007/s00125-013-3101-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 21(1):2–14. doi:10.1097/00004647-200101000-00002

    Article  CAS  Google Scholar 

  12. Kim GS, Jung JE, Narasimhan P, Sakata H, Chan PH (2012) Induction of thioredoxin-interacting protein is mediated by oxidative stress, calcium, and glucose after brain injury in mice. Neurobiol Dis 46(2):440–449. doi:10.1016/j.nbd.2012.02.008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Al-Gayyar MM, Abdelsaid MA, Matragoon S, Pillai BA, El-Remessy AB (2011) Thioredoxin interacting protein is a novel mediator of retinal inflammation and neurotoxicity. Br J Pharmacol 164(1):170–180. doi:10.1111/j.1476-5381.2011.01336.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Chen J, Cha-Molstad H, Szabo A, Shalev A (2009) Diabetes induces and calcium channel blockers prevent cardiac expression of proapoptotic thioredoxin-interacting protein. Am J Physiol Endocrinol Metab 296(5):E1133–E1139. doi:10.1152/ajpendo.90944.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. El-Azab MF, Baldowski BR, Mysona BA, Shanab AY, Mohamed IN, Abdelsaid MA, Matragoon S, Bollinger KE, Saul A, El-Remessy AB (2014) Deletion of thioredoxin interacting protein preserve retinal neuronal function by mitigating inflammation and vascular injury. Br J Pharmacol. doi:10.1111/bph.12535

    PubMed Central  PubMed  Google Scholar 

  16. Takagi Y, Mitsui A, Nishiyama A, Nozaki K, Sono H, Gon Y, Hashimoto N, Yodoi J (1999) Overexpression of thioredoxin in transgenic mice attenuates focal ischemic brain damage. Proc Natl Acad Sci U S A 96(7):4131–4136

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Abulafia DP, de Rivero Vaccari JP, Lozano JD, Lotocki G, Keane RW, Dietrich WD (2009) Inhibition of the inflammasome complex reduces the inflammatory response after thromboembolic stroke in mice. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 29(3):534–544. doi:10.1038/jcbfm.2008.143

    Article  CAS  Google Scholar 

  18. Savage CD, Lopez-Castejon G, Denes A, Brough D (2012) NLRP3-inflammasome activating DAMPs stimulate an inflammatory response in glia in the absence of priming which contributes to brain inflammation after injury. Front Immunol 3:288. doi:10.3389/fimmu.2012.00288

    Article  PubMed Central  PubMed  Google Scholar 

  19. Danton GH, Dietrich WD (2003) Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62(2):127–136

    CAS  PubMed  Google Scholar 

  20. Zhou R, Yazdi AS, Menu P, Tschopp J (2011) A role for mitochondria in NLRP3 inflammasome activation. Nature 469(7329):221–225. doi:10.1038/nature09663

    Article  CAS  PubMed  Google Scholar 

  21. Lunov O, Syrovets T, Loos C, Nienhaus GU, Mailander V, Landfester K, Rouis M, Simmet T (2011) Amino-functionalized polystyrene nanoparticles activate the NLRP3 inflammasome in human macrophages. ACS Nano 5(12):9648–9657. doi:10.1021/nn203596e

    Article  CAS  PubMed  Google Scholar 

  22. Park YJ, Yoon SJ, Suh HW, Kim DO, Park JR, Jung H, Kim TD, Yoon SR, Min JK, Na HJ, Lee SJ, Lee HG, Lee YH, Lee HB, Choi I (2013) TXNIP deficiency exacerbates endotoxic shock via the induction of excessive nitric oxide synthesis. PLoS Pathog 9(10):e1003646. doi:10.1371/journal.ppat.1003646

    Article  PubMed Central  PubMed  Google Scholar 

  23. Oslowski CM, Hara T, O’Sullivan-Murphy B, Kanekura K, Lu S, Hara M, Ishigaki S, Zhu LJ, Hayashi E, Hui ST, Greiner D, Kaufman RJ, Bortell R, Urano F (2012) Thioredoxin-interacting protein mediates ER stress-induced beta cell death through initiation of the inflammasome. Cell Metab 16(2):265–273. doi:10.1016/j.cmet.2012.07.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20(3):319–325

    Article  CAS  PubMed  Google Scholar 

  25. Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10(2):417–426

    Article  CAS  PubMed  Google Scholar 

  26. Lamkanfi M (2011) Emerging inflammasome effector mechanisms. Nat Rev Immunol 11(3):213–220. doi:10.1038/nri2936

    Article  CAS  PubMed  Google Scholar 

  27. Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA, Vajjhala PR, Roberts TL, Schroder K, Vince JE, Hill JM, Silke J, Stacey KJ (2013) AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ 20(9):1149–1160. doi:10.1038/cdd.2013.37

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Feuerstein GZ, Zaleska MM, Krams M, Wang X, Day M, Rutkowski JL, Finklestein SP, Pangalos MN, Poole M, Stiles GL, Ruffolo RR, Walsh FL (2008) Missing steps in the STAIR case: a translational medicine perspective on the development of NXY-059 for treatment of acute ischemic stroke. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 28(1):217–219. doi:10.1038/sj.jcbfm.9600516

    Article  CAS  Google Scholar 

  29. Fremont L (2000) Biological effects of resveratrol. Life Sci 66(8):663–673

    Article  CAS  PubMed  Google Scholar 

  30. Pace-Asciak CR, Rounova O, Hahn SE, Diamandis EP, Goldberg DM (1996) Wines and grape juices as modulators of platelet aggregation in healthy human subjects. Clin Chim Acta Int J Clin Chem 246(1–2):163–182

    Article  CAS  Google Scholar 

  31. Singh N, Agrawal M, Dore S (2013) Neuroprotective properties and mechanisms of resveratrol in in vitro and in vivo experimental cerebral stroke models. ACS Chem Neurosci 4(8):1151–1162. doi:10.1021/cn400094w

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Yousuf S, Atif F, Ahmad M, Hoda N, Ishrat T, Khan B, Islam F (2009) Resveratrol exerts its neuroprotective effect by modulating mitochondrial dysfunctions and associated cell death during cerebral ischemia. Brain Res 1250:242–253. doi:10.1016/j.brainres.2008.10.068

    Article  CAS  PubMed  Google Scholar 

  33. Nivet-Antoine V, Cottart CH, Lemarechal H, Vamy M, Margaill I, Beaudeux JL, Bonnefont-Rousselot D, Borderie D (2010) trans-Resveratrol downregulates Txnip overexpression occurring during liver ischemia-reperfusion. Biochimie 92(12):1766–1771. doi:10.1016/j.biochi.2010.07.018

    Article  CAS  PubMed  Google Scholar 

  34. Delcker A, Diener HC, Timmann D, Faustmann P (1993) The role of vertebral and internal carotid artery disease in the pathogenesis of vertebrobasilar transient ischemic attacks. Eur Arch Psychiatry Clin Neurosci 242(4):179–183

    Article  CAS  PubMed  Google Scholar 

  35. Hacke W, Schwab S, Horn M, Spranger M, De Georgia M, von Kummer R (1996) ‛Malignant’ middle cerebral artery territory infarction: clinical course and prognostic signs. Arch Neurol 53(4):309–315

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Z, Chopp M, Zhang RL, Goussev A (1997) A mouse model of embolic focal cerebral ischemia. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 17(10):1081–1088. doi:10.1097/00004647-199710000-00010

    Article  CAS  Google Scholar 

  37. Meng W, Wang X, Asahi M, Kano T, Asahi K, Ackerman RH, Lo EH (1999) Effects of tissue type plasminogen activator in embolic versus mechanical models of focal cerebral ischemia in rats. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 19(12):1316–1321. doi:10.1097/00004647-199912000-00004

    Article  CAS  Google Scholar 

  38. Abdelsaid MA, Matragoon S, El-Remessy AB (2013) Thioredoxin-interacting protein expression is required for VEGF-mediated angiogenic signal in endothelial cells. Antioxid Redox Signal 19(18):2199–2212. doi:10.1089/ars.2012.4761

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Hui ST, Andres AM, Miller AK, Spann NJ, Potter DW, Post NM, Chen AZ, Sachithanantham S, Jung DY, Kim JK, Davis RA (2008) Txnip balances metabolic and growth signaling via PTEN disulfide reduction. Proc Natl Acad Sci U S A 105(10):3921–3926. doi:10.1073/pnas.0800293105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lanzillotta A, Pignataro G, Branca C, Cuomo O, Sarnico I, Benarese M, Annunziato L, Spano P, Pizzi M (2012) Targeted acetylation of NF-kappaB/RelA and histones by epigenetic drugs reduces post-ischemic brain injury in mice with an extended therapeutic window. Neurobiol Dis 49C:177–189. doi:10.1016/j.nbd.2012.08.018

    Google Scholar 

  41. Shin JA, Lee H, Lim YK, Koh Y, Choi JH, Park EM (2010) Therapeutic effects of resveratrol during acute periods following experimental ischemic stroke. J Neuroimmunol 227(1–2):93–100. doi:10.1016/j.jneuroim.2010.06.017

    Article  CAS  PubMed  Google Scholar 

  42. Hoda MN, Siddiqui S, Herberg S, Periyasamy-Thandavan S, Bhatia K, Hafez SS, Johnson MH, Hill WD, Ergul A, Fagan SC, Hess DC (2012) Remote ischemic perconditioning is effective alone and in combination with intravenous tissue-type plasminogen activator in murine model of embolic stroke. Stroke J Cereb Circ 43(10):2794–2799. doi:10.1161/STROKEAHA.112.660373

    Article  CAS  Google Scholar 

  43. Ishrat T, Pillai B, Ergul A, Hafez S, Fagan SC (2013) Candesartan reduces the hemorrhage associated with delayed tissue plasminogen activator treatment in rat embolic stroke. Neurochem Res 38(12):2668–2677. doi:10.1007/s11064-013-1185-y

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Takizawa S, Fukuyama N, Hirabayashi H, Nakazawa H, Shinohara Y (1999) Dynamics of nitrotyrosine formation and decay in rat brain during focal ischemia-reperfusion. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 19(6):667–672. doi:10.1097/00004647-199906000-00010

    Article  CAS  Google Scholar 

  45. Ahmad A, Khan MM, Hoda MN, Raza SS, Khan MB, Javed H, Ishrat T, Ashafaq M, Ahmad ME, Safhi MM, Islam F (2011) Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochem Res 36(8):1360–1371. doi:10.1007/s11064-011-0458-6

    Article  CAS  PubMed  Google Scholar 

  46. Khan MM, Ahmad A, Ishrat T, Khan MB, Hoda MN, Khuwaja G, Raza SS, Khan A, Javed H, Vaibhav K, Islam F (2010) Resveratrol attenuates 6-hydroxydopamine-induced oxidative damage and dopamine depletion in rat model of Parkinson’s disease. Brain Res 1328:139–151. doi:10.1016/j.brainres.2010.02.031

    Article  CAS  PubMed  Google Scholar 

  47. Dunn LL, Buckle AM, Cooke JP, Ng MK (2010) The emerging role of the thioredoxin system in angiogenesis. Arterioscler Thromb Vasc Biol 30(11):2089–2098. doi:10.1161/ATVBAHA.110.209643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Chen CL, Lin CF, Chang WT, Huang WC, Teng CF, Lin YS (2008) Ceramide induces p38 MAPK and JNK activation through a mechanism involving a thioredoxin-interacting protein-mediated pathway. Blood 111(8):4365–4374. doi:10.1182/blood-2007-08-106336

    Article  CAS  PubMed  Google Scholar 

  49. Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, Hornung V (2011) Inflammasomes: current understanding and open questions. Cell Mol Life Sci : CMLS 68(5):765–783. doi:10.1007/s00018-010-0567-4

    Article  CAS  PubMed  Google Scholar 

  50. Walsh JG, Logue SE, Luthi AU, Martin SJ (2011) Caspase-1 promiscuity is counterbalanced by rapid inactivation of processed enzyme. J Biol Chem 286(37):32513–32524. doi:10.1074/jbc.M111.225862

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Schroder K, Sagulenko V, Zamoshnikova A, Richards AA, Cridland JA, Irvine KM, Stacey KJ, Sweet MJ (2012) Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology 217(12):1325–1329. doi:10.1016/j.imbio.2012.07.020

    Article  CAS  PubMed  Google Scholar 

  52. Schroder K, Zhou R, Tschopp J (2010) The NLRP3 inflammasome: a sensor for metabolic danger? Science 327(5963):296–300. doi:10.1126/science.1184003

    Article  CAS  PubMed  Google Scholar 

  53. Devi TS, Lee I, Huttemann M, Kumar A, Nantwi KD, Singh LP (2012) TXNIP links innate host defense mechanisms to oxidative stress and inflammation in retinal Muller glia under chronic hyperglycemia: implications for diabetic retinopathy. Exp Diabetes Res 2012:438238. doi:10.1155/2012/438238

    Article  PubMed Central  PubMed  Google Scholar 

  54. Perrone L, Devi TS, Hosoya K, Terasaki T, Singh LP (2009) Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions. J Cell Physiol 221(1):262–272. doi:10.1002/jcp.21852

    Article  CAS  PubMed  Google Scholar 

  55. Perrone L, Devi TS, Hosoya KI, Terasaki T, Singh LP (2010) Inhibition of TXNIP expression in vivo blocks early pathologies of diabetic retinopathy. Cell Death Dis 1:e65. doi:10.1038/cddis.2010.42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. El-Azab MF, Baldowski BR, Mysona BA, Shanab AY, Mohamed IN, Abdelsaid MA, Matragoon S, Bollinger KE, Saul A, El-Remessy AB (2014) Deletion of thioredoxin-interacting protein preserves retinal neuronal function by preventing inflammation and vascular injury. Br J Pharmacol 171(5):1299–1313. doi:10.1111/bph.12535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Yamawaki H, Pan S, Lee RT, Berk BC (2005) Fluid shear stress inhibits vascular inflammation by decreasing thioredoxin-interacting protein in endothelial cells. J Clin Invest 115(3):733–738. doi:10.1172/JCI23001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Dinarello CA (2000) Proinflammatory cytokines. Chest 118(2):503–508

    Article  CAS  PubMed  Google Scholar 

  59. Franchi L, Eigenbrod T, Nunez G (2009) Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol 183(2):792–796. doi:10.4049/jimmunol.0900173

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Stoll G, Jander S, Schroeter M (2000) Cytokines in CNS disorders: neurotoxicity versus neuroprotection. J Neural Transm Suppl 59:81–89

    CAS  PubMed  Google Scholar 

  61. Liu T, Clark RK, McDonnell PC, Young PR, White RF, Barone FC, Feuerstein GZ (1994) Tumor necrosis factor-alpha expression in ischemic neurons. Stroke J Cereb Circ 25(7):1481–1488

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. JA Lusis for providing TKO mice. This study was supported by the Veterans Affairs Merit Review (SCF, BX000891, NIH – R01 (SCF, NS063965), and NIH – R01 (ABE, EY022408). Authors would like to thank Ms Colby Polonsky for her assistance with Cover page image.

Conflict of Interest

SCF is a consultant for and has received funding from Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tauheed Ishrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishrat, T., Mohamed, I.N., Pillai, B. et al. Thioredoxin-Interacting Protein: a Novel Target for Neuroprotection in Experimental Thromboembolic Stroke in Mice. Mol Neurobiol 51, 766–778 (2015). https://doi.org/10.1007/s12035-014-8766-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8766-x

Keywords

Navigation