Skip to main content

Advertisement

Log in

Longevity and anti-aging effects of curcumin supplementation

  • REVIEW
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Aging is a gradual and irreversible process that is accompanied by an overall decline in cellular function and a significant increase in the risk of age-associated disorders. Generally, delaying aging is a more effective method than treating diseases associated with aging. Currently, researchers are focused on natural compounds and their therapeutic and health benefits. Curcumin is the main active substance that is present in turmeric, a spice that is made up of the roots and rhizomes of the Curcuma longa plant. Curcumin demonstrated a positive impact on slowing down the aging process by postponing age-related changes. This compound may have anti-aging properties by changing levels of proteins involved in the aging process, such as sirtuins and AMPK, and inhibiting pro-aging proteins, such as NF-κB and mTOR. In clinical research, this herbal compound has been extensively examined in terms of safety, efficacy, and pharmacokinetics. There are numerous effects of curcumin on mechanisms related to aging and human diseases, so we discuss many of them in detail in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Li Z, Zhang Z, Ren Y, Wang Y, Fang J, Yue H, et al. Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology. 2021;22(2):165–87.

    Article  PubMed  PubMed Central  Google Scholar 

  2. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ghasemi F, Shafiee M, Banikazemi Z, Pourhanifeh MH, Khanbabaei H, Shamshirian A, et al. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract. 2019;215(10):152556.

    Article  CAS  PubMed  Google Scholar 

  4. Mortezaee K, Salehi E, Mirtavoos-Mahyari H, Motevaseli E, Najafi M, Farhood B, et al. Mechanisms of apoptosis modulation by curcumin: implications for cancer therapy. J Cell Physiol. 2019;234(8):12537–50.

    Article  CAS  PubMed  Google Scholar 

  5. Panahi Y, Khalili N, Sahebi E, Namazi S, Simental-Mendía LE, Majeed M, et al. Effects of curcuminoids plus piperine on glycemic, hepatic and inflammatory biomarkers in patients with type 2 diabetes mellitus: a randomized double-blind placebo-controlled trial. Drug Res. 2018;68(7):403–9.

    Article  CAS  Google Scholar 

  6. Sadeghian M, Rahmani S, Jamialahmadi T, Johnston TP, Sahebkar A. The effect of oral curcumin supplementation on health-related quality of life: a systematic review and meta-analysis of randomized controlled trials. J Affect Disord. 2021;1(278):627–36.

    Article  Google Scholar 

  7. Farzaei MH, Zobeiri M, Parvizi F, El-Senduny FF, Marmouzi I, Coy-Barrera E, et al. Curcumin in liver diseases: a systematic review of the cellular mechanisms of oxidative stress and clinical perspective. Nutrients. 2018;10(7):855. https://doi.org/10.3390/nu10070855.

  8. Vaiserman A, Koliada A, Zayachkivska A, Lushchak O. Curcumin: a therapeutic potential in ageing-related disorders. PharmaNutrition. 2020;14:100226.

    Article  Google Scholar 

  9. Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39(3):283–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barchitta M, Maugeri A, Favara G, Magnano San Lio R, Evola G, Agodi A, et al. Nutrition and wound healing: an overview focusing on the beneficial effects of curcumin. Int J Mol Sci. 2019;20(5):1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tosato M, Zamboni V, Ferrini A, Cesari M. The aging process and potential interventions to extend life expectancy. Clin Interv Aging. 2007;2(3):401–12.

    PubMed  PubMed Central  Google Scholar 

  12. Kiss HJ, Mihalik A, Nánási T, Ory B, Spiró Z, Soti C, et al. Ageing as a price of cooperation and complexity: self-organization of complex systems causes the gradual deterioration of constituent networks. BioEssays : News Rev Mol, Cell Dev Biol. 2009;31(6):651–64.

    Article  Google Scholar 

  13. Xia X, Chen W, McDermott J, Han JJ. Molecular and phenotypic biomarkers of aging. F1000Research. 2017;6:860.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cevenini E, Invidia L, Lescai F, Salvioli S, Tieri P, Castellani G, et al. Human models of aging and longevity. Expert Opin Biol Ther. 2008;8(9):1393–405.

    Article  CAS  PubMed  Google Scholar 

  15. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186(2):243–78.

    Article  PubMed  Google Scholar 

  16. Shinde P, Kuhikar R, Kulkarni R, Khan N, Limaye L, Kale V. Curcumin restores the engraftment capacity of aged hematopoietic stem cells and also reduces PD-1 expression on cytotoxic T cells. J Tissue Eng Regen Med. 2021;15(4):388–400.

    Article  CAS  PubMed  Google Scholar 

  17. Brieger K, Schiavone S, Miller FJ Jr, Krause KH. Reactive oxygen species: from health to disease. Swiss Med Wkly. 2012;142:w13659.

    CAS  PubMed  Google Scholar 

  18. Fan J, Ren D, Wang J, Liu X, Zhang H, Wu M, et al. Bruceine D induces lung cancer cell apoptosis and autophagy via the ROS/MAPK signaling pathway in vitro and in vivo. Cell Death Dis. 2020;11(2):126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Yu X, Li C, Ma L, Zhao Z, Guan S, et al. Caffeic acid protects against Aβ toxicity and prolongs lifespan in Caenorhabditis elegans models. Food Funct. 2021;12(3):1219–31.

    Article  PubMed  Google Scholar 

  20. Wijaya YT, Setiawan T, Sari IN, Park K, Lee CH, Cho KW, et al. Ginsenoside Rd ameliorates muscle wasting by suppressing the signal transducer and activator of transcription 3 pathway. J Cachexia Sarcopenia Muscle. 2022;13(6):3149–62.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Albrahim T, Alonazi M. Effect of blueberry extract on liver in aged rats. Oxid Med Cell Longev. 2022;2022:3490776.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. The consumption of Sechium edule (chayote) has antioxidant effect and prevents telomere attrition in older adults with metabolic syndrome. Redox Rep: Commun Free Radic Res. 2023;28(1):2207323.

    Article  Google Scholar 

  23. Jang HY. Factors associated with successful aging among community-dwelling older adults based on ecological system model. Int J Environ Res Public Health. 2020;17(9):3220. https://doi.org/10.3390/ijerph17093220.

  24. Troesch B, Eggersdorfer M, Laviano A, Rolland Y, Smith AD, Warnke I, et al. Expert opinion on benefits of long-chain omega-3 fatty acids (DHA and EPA) in aging and clinical nutrition. Nutrients. 2020;12(9):2555. https://doi.org/10.3390/nu12092555.

  25. Thomas DR. Vitamins in aging, health, and longevity. Clin Interv Aging. 2006;1(1):81–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao L, Liu X, Luo X, Lou X, Li P, Li X, et al. Antiaging effects of dietary supplements and natural products. Front Pharmacol. 2023;14:1192714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Barcelos IP, Haas RH. CoQ10 and Aging. Biology (Basel). 2019;8(2):28. https://doi.org/10.3390/biology8020028.

  28. Chen J, Li Y, Zhu Q, Li T, Lu H, Wei N, et al. Anti-skin-aging effect of epigallocatechin gallate by regulating epidermal growth factor receptor pathway on aging mouse model induced by D-galactose. Mech Ageing Dev. 2017;164:1–7.

    Article  CAS  PubMed  Google Scholar 

  29. Payne A, Nahashon S, Taka E, Adinew GM, Soliman KFA. Epigallocatechin-3-gallate (EGCG): new therapeutic perspectives for neuroprotection, aging, and neuroinflammation for the modern age. Biomolecules. 2022;12(3):371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ozkur M, Benlier N, Takan I, Vasileiou C, Georgakilas AG, Pavlopoulou A, et al. Ginger for healthy ageing: a systematic review on current evidence of its antioxidant, anti-inflammatory, and anticancer properties. Oxid Med Cell Longev. 2022;2022:4748447.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Al-Atif H. Collagen supplements for aging and wrinkles: a paradigm shift in the fields of dermatology and cosmetics. Dermatol Pract Conceptual. 2022;12(1):e2022018.

    Article  Google Scholar 

  32. Benameur T, Soleti R, Panaro MA, La Torre ME, Monda V, Messina G, et al. Curcumin as prospective anti-aging natural compound: focus on brain. Molecules. 2021;26(16):4794. https://doi.org/10.3390/molecules26164794.

  33. Bjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, et al. Natural compounds and products from an anti-aging perspective. Molecules. 2022;27(20):7084. https://doi.org/10.3390/molecules27207084.

  34. Prasad S, Gupta SC, Tyagi AK, Aggarwal BB. Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Adv. 2014;32(6):1053–64.

    Article  CAS  PubMed  Google Scholar 

  35. Esatbeyoglu T, Huebbe P, Ernst IM, Chin D, Wagner AE, Rimbach G. Curcumin—from molecule to biological function. Angew Chem Int Ed Engl. 2012;51(22):5308–32.

    Article  CAS  PubMed  Google Scholar 

  36. Paulucci VP, Couto RO, Teixeira CCC, Freitas LAP. Optimization of the extraction of curcumin from Curcuma longa rhizomes. Rev Bras Farmacognosia. 2013;23(1):94–100.

    Article  CAS  Google Scholar 

  37. Payton F, Sandusky P, Alworth WL. NMR study of the solution structure of curcumin. J Nat Prod. 2007;70(2):143–6.

    Article  CAS  PubMed  Google Scholar 

  38. Priyadarsini KI. Photophysics, photochemistry and photobiology of curcumin: studies from organic solutions, bio-mimetics and living cells. J Photochem Photobiol C: Photochem Rev. 2009;10(2):81–95.

    Article  CAS  Google Scholar 

  39. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “curecumin”: from kitchen to clinic. Biochem Pharmacol. 2008;75(4):787–809.

    Article  CAS  PubMed  Google Scholar 

  40. Aggarwal BB, Kumar A, Bharti AC. Anticancer potential of curcumin: preclinical and clinical studies. Anticancer Res. 2003;23(1A):363–98.

    CAS  PubMed  Google Scholar 

  41. Pulido-Moran M, Moreno-Fernandez J, Ramirez-Tortosa C, Ramirez-Tortosa M. Curcumin and health. Molecules (Basel, Switzerland). 2016;21(3):264.

    Article  PubMed  Google Scholar 

  42. Luca SV, Macovei I, Bujor A, Miron A, Skalicka-Woźniak K, Aprotosoaie AC, et al. Bioactivity of dietary polyphenols: the role of metabolites. Crit Rev Food Sci Nutr. 2020;60(4):626–59.

    Article  CAS  PubMed  Google Scholar 

  43. Hoehle SI, Pfeiffer E, Metzler M. Glucuronidation of curcuminoids by human microsomal and recombinant UDP-glucuronosyltransferases. Mol Nutr Food Res. 2007;51(8):932–8.

    Article  CAS  PubMed  Google Scholar 

  44. Tsuda T. Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct. 2018;9(2):705–14.

    Article  CAS  PubMed  Google Scholar 

  45. Hoehle SI, Pfeiffer E, Sólyom AM, Metzler M. Metabolism of curcuminoids in tissue slices and subcellular fractions from rat liver. J Agric Food Chem. 2006;54(3):756–64.

    Article  CAS  PubMed  Google Scholar 

  46. Huang Y, Cao S, Zhang Q, Zhang H, Fan Y, Qiu F, et al. Biological and pharmacological effects of hexahydrocurcumin, a metabolite of curcumin. Arch Biochem Biophys. 2018;15(646):31–7.

    Article  Google Scholar 

  47. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.

    Article  CAS  PubMed  Google Scholar 

  48. Hassaninasab A, Hashimoto Y, Tomita-Yokotani K, Kobayashi M. Discovery of the curcumin metabolic pathway involving a unique enzyme in an intestinal microorganism. Proc Natl Acad Sci USA. 2011;108(16):6615–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Heger M, van Golen RF, Broekgaarden M, Michel MC. The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev. 2014;66(1):222–307.

    Article  PubMed  Google Scholar 

  50. Prasad S, Tyagi AK, Aggarwal BB. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin: the golden pigment from golden spice. Cancer Res Treat. 2014;46(1):2–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ireson CR, Jones DJ, Orr S, Coughtrie MW, Boocock DJ, Williams ML, et al. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol, Biomark Prev: Publ Am Assoc Cancer Res, Cosponsored Am Soc Prev Oncol. 2002;11(1):105–11.

    CAS  Google Scholar 

  52. Aggarwal BB, Deb L, Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules (Basel, Switzerland). 2014;20(1):185–205.

    Article  PubMed  Google Scholar 

  53. Tomeh MA, Hadianamrei R, Zhao X. A review of curcumin and its derivatives as anticancer agents. Int J Mol Sci. 2019;20(5):1033. https://doi.org/10.3390/ijms20051033.

  54. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem. 2017;60(5):1620–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gupta SC, Patchva S, Aggarwal BB. Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J. 2013;15(1):195–218.

    Article  CAS  PubMed  Google Scholar 

  56. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: a review of pharmacokinetic, experimental and clinical studies. Biomed Pharm= Biomedecine & pharmacotherapie. 2017;85:102–12.

    Article  CAS  Google Scholar 

  57. Db M, Sreedharan S, Mahadik K. Role of piperine as an effective bioenhancer in drug absorption. Pharm Anal Acta. 2018;9(7):1–4.

    Article  Google Scholar 

  58. Teiten M-H, Dicato M, Diederich M. Hybrid curcumin compounds: a new strategy for cancer treatment. Molecules (Basel, Switzerland). 2014;19(12):20839–63.

    Article  PubMed  Google Scholar 

  59. Pancholi V, Smina TP, Kunnumakkara AB, Maliakel B, Krishnakumar IM. Safety assessment of a highly bioavailable curcumin-galactomannoside complex (CurQfen) in healthy volunteers, with a special reference to the recent hepatotoxic reports of curcumin supplements: a 90-days prospective study. Toxicol Rep. 2021;8:1255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pal A, Sung B, Bhanu Prasad BA, Schuber PT Jr, Prasad S, Aggarwal BB, et al. Curcumin glucuronides: assessing the proliferative activity against human cell lines. Bioorg Med Chem. 2014;22(1):435–9.

    Article  CAS  PubMed  Google Scholar 

  61. Stohs S, Ray S. Issues with human bioavailability determinations of bioactive curcumin. Biomed J Sci Tech Res. 2019;12(4):9417–9.

    Google Scholar 

  62. Sasaki H, Sunagawa Y, Takahashi K, Imaizumi A, Fukuda H, Hashimoto T, et al. Innovative preparation of curcumin for improved oral bioavailability. Biol Pharm Bull. 2011;34(5):660–5.

    Article  CAS  PubMed  Google Scholar 

  63. Kanai M, Imaizumi A, Otsuka Y, Sasaki H, Hashiguchi M, Tsujiko K, et al. Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol. 2012;69(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  64. Nakagawa Y, Mukai S, Yamada S, Matsuoka M, Tarumi E, Hashimoto T, et al. Short-term effects of highly-bioavailable curcumin for treating knee osteoarthritis: a randomized, double-blind, placebo-controlled prospective study. J Orthop Sci: Off J Japan Orthop Assoc. 2014;19(6):933–9.

    Article  CAS  Google Scholar 

  65. Purpura M, Lowery RP, Wilson JM, Mannan H, Münch G, Razmovski-Naumovski V. Analysis of different innovative formulations of curcumin for improved relative oral bioavailability in human subjects. Eur J Nutr. 2018;57(3):929–38.

    Article  CAS  PubMed  Google Scholar 

  66. Selvendiran K, Kuppusamy ML, Bratasz A, Tong L, Rivera BK, Rink C, et al. Inhibition of vascular smooth-muscle cell proliferation and arterial restenosis by HO-3867, a novel synthetic curcuminoid, through up-regulation of PTEN expression. J Pharmacol Exp Ther. 2009;329(3):959–66.

    Article  CAS  PubMed  Google Scholar 

  67. Dinkova-Kostova AT, Cory AH, Bozak RE, Hicks RJ, Cory JG. Bis(2-hydroxybenzylidene)acetone, a potent inducer of the phase 2 response, causes apoptosis in mouse leukemia cells through a p53-independent, caspase-mediated pathway. Cancer Lett. 2007;245(1–2):341–9.

    Article  CAS  PubMed  Google Scholar 

  68. Tamvakopoulos C, Dimas K, Sofianos ZD, Hatziantoniou S, Han Z, Liu ZL, et al. Metabolism and anticancer activity of the curcumin analogue, dimethoxycurcumin. Clin Cancer Res: Off J Am Assoc Cancer Res. 2007;13(4):1269–77.

    Article  CAS  Google Scholar 

  69. He Y, Li W, Hu G, Sun H, Kong Q. Bioactivities of EF24, a novel curcumin analog: a review. Front Oncol. 2018;8:614.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jeon OH, Kim C, Laberge RM, Demaria M, Rathod S, Vasserot AP, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017;23(6):775–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011;479(7372):232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, et al. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging. 2016;8(7):1294–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Naylor RM, Baker DJ, van Deursen JM. Senescent cells: a novel therapeutic target for aging and age-related diseases. Clin Pharmacol Ther. 2013;93(1):105–16.

    Article  CAS  PubMed  Google Scholar 

  74. Adams BK, Ferstl EM, Davis MC, Herold M, Kurtkaya S, Camalier RF, et al. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg Med Chem. 2004;12(14):3871–83.

    Article  CAS  PubMed  Google Scholar 

  75. Rath KS, Naidu SK, Lata P, Bid HK, Rivera BK, McCann GA, et al. HO-3867, a safe STAT3 inhibitor, is selectively cytotoxic to ovarian cancer. Cancer Res. 2014;74(8):2316–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li W, He Y, Zhang R, Zheng G, Zhou D. The curcumin analog EF24 is a novel senolytic agent. Aging. 2019;11(2):771–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kunnumakkara AB, Bordoloi D, Padmavathi G, Monisha J, Roy NK, Prasad S, et al. Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. Br J Pharmacol. 2017;174(11):1325–48.

    Article  CAS  PubMed  Google Scholar 

  78. Yadav VS, Mishra KP, Singh DP, Mehrotra S, Singh VK. Immunomodulatory effects of curcumin. Immunopharmacol Immunotoxicol. 2005;27(3):485–97.

    Article  CAS  PubMed  Google Scholar 

  79. Gorabi AM, Hajighasemi S, Kiaie N, Rosano GMC, Sathyapalan T, Al-Rasadi K, et al. Anti-fibrotic effects of curcumin and some of its analogues in the heart. Heart Fail Rev. 2020;25(5):731–43.

    Article  CAS  PubMed  Google Scholar 

  80. Carolina Alves R, PerosaFernandes R, Fonseca-Santos B, DamianiVictorelli F, Chorilli M. A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit Rev Anal Chem. 2019;49(2):138–49.

    Article  CAS  PubMed  Google Scholar 

  81. Leiherer A, Mündlein A, Drexel H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vasc Pharmacol. 2013;58(1):3–20.

    Article  CAS  Google Scholar 

  82. Maldonado E, Morales-Pison S, Urbina F, Solari A. Aging hallmarks and the role of oxidative stress. Antioxidants. 2023;12(3):651. https://doi.org/10.3390/antiox12030651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alizadeh M, Kheirouri S. Curcumin reduces malondialdehyde and improves antioxidants in humans with diseased conditions: a comprehensive meta-analysis of randomized controlled trials. Biomedicine. 2019;9(4):23.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Abrahams S, Haylett WL, Johnson G, Carr JA, Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: a review. Neuroscience. 2019;15(406):1–21.

    Article  Google Scholar 

  85. Abete P, Napoli C, Santoro G, Ferrara N, Tritto I, Chiariello M, et al. Age-related decrease in cardiac tolerance to oxidative stress. J Mol Cell Cardiol. 1999;31(1):227–36.

    Article  CAS  PubMed  Google Scholar 

  86. Jeeva JS, Sunitha J, Ananthalakshmi R, Rajkumari S, Ramesh M, Krishnan R. Enzymatic antioxidants and its role in oral diseases. J Pharm Bioallied Sci. 2015;7(Suppl 2):S331–3.

    PubMed  PubMed Central  Google Scholar 

  87. Poljsak B. Strategies for reducing or preventing the generation of oxidative stress. Oxid Med Cell Longev. 2011;2011:194586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chilelli NC, Ragazzi E, Valentini R, Cosma C, Ferraresso S, Lapolla A, et al. Curcumin and Boswellia serrata modulate the glyco-oxidative status and lipo-oxidation in master athletes. Nutrients. 2016;8(11):745. https://doi.org/10.3390/nu8110745.

  89. Pawelec G, Goldeck D, Derhovanessian E. Inflammation, ageing and chronic disease. Curr Opin Immunol. 2014;29:23–8.

    Article  CAS  PubMed  Google Scholar 

  90. Sanada F, Taniyama Y, Muratsu J, Otsu R, Shimizu H, Rakugi H, et al. Source of chronic inflammation in aging. Front Cardiovasc Med. 2018;5:12.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Fulop T, McElhaney J, Pawelec G, Cohen AA, Morais JA, Dupuis G, et al. Frailty, inflammation and immunosenescence. Interdisc Topics Gerontol Geriatr. 2015;41:26–40.

    Article  Google Scholar 

  92. Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, et al. Anti-inflammatory effects of curcumin in the inflammatory diseases: status, limitations and countermeasures. Drug Des Dev Ther. 2021;15:4503–25.

    Article  CAS  Google Scholar 

  93. Lingappan K. NF-κB in oxidative stress. Curr Opin Toxicol. 2018;7:81–6.

    Article  PubMed  Google Scholar 

  94. Grabowska W, Suszek M, Wnuk M, Lewinska A, Wasiak E, Sikora E, et al. Curcumin elevates sirtuin level but does not postpone in vitro senescence of human cells building the vasculature. Oncotarget. 2016;7(15):19201–13.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Frasca D, Diaz A, Romero M, Garcia D, Blomberg BB. B cell immunosenescence. Annu Rev Cell Dev Biol. 2020;6(36):551–74.

    Article  Google Scholar 

  96. Alizadeh F, Javadi M, Karami AA, Gholaminejad F, Kavianpour M, Haghighian HK. Curcumin nanomicelle improves semen parameters, oxidative stress, inflammatory biomarkers, and reproductive hormones in infertile men: a randomized clinical trial. Phytother Res: PTR. 2018;32(3):514–21.

    Article  CAS  PubMed  Google Scholar 

  97. Inadera H, Egashira K, Takemoto M, Ouchi Y, Matsushima K. Increase in circulating levels of monocyte chemoattractant protein-1 with aging. J Interferon Cytokine Res: Off J Int Soc Interferon Cytokine Res. 1999;19(10):1179–82.

    Article  CAS  Google Scholar 

  98. Yousefzadeh MJ, Schafer MJ, Noren Hooten N, Atkinson EJ, Evans MK, Baker DJ, et al. Circulating levels of monocyte chemoattractant protein-1 as a potential measure of biological age in mice and frailty in humans. Aging Cell. 2018;17(2):e12706. https://doi.org/10.1111/acel.12706.

  99. Karimian MS, Pirro M, Majeed M, Sahebkar A. Curcumin as a natural regulator of monocyte chemoattractant protein-1. Cytokine Growth Factor Rev. 2017;33:55–63.

    Article  CAS  PubMed  Google Scholar 

  100. Franco S, Blasco MA, Siedlak SL, Harris PL, Moreira PI, Perry G, et al. Telomeres and telomerase in Alzheimer’s disease: epiphenomena or a new focus for therapeutic strategy? Alzheimer’s Dement. 2006;2(3):164–8.

    Article  CAS  Google Scholar 

  101. Satyanarayana A, Greenberg RA, Schaetzlein S, Buer J, Masutomi K, Hahn WC, et al. Mitogen stimulation cooperates with telomere shortening to activate DNA damage responses and senescence signaling. Mol Cell Biol. 2004;24(12):5459–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Xiao Z, Zhang A, Lin J, Zheng Z, Shi X, Di W, et al. Telomerase: a target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro. PLoS One. 2014;9(7):e101251.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Taka T, Changtam C, Thaichana P, Kaewtunjai N, Suksamrarn A, Lee TR, et al. Curcuminoid derivatives enhance telomerase activity in an in vitro TRAP assay. Bioorg Med Chem Lett. 2014;24(22):5242–6.

    Article  CAS  PubMed  Google Scholar 

  104. Forouzanfar F, Majeed M, Jamialahmadi T, Sahebkar A. Telomerase: a target for therapeutic effects of curcumin in cancer. Adv Exp Med Biol. 2021;1286:135–43.

    Article  CAS  PubMed  Google Scholar 

  105. Johnson SC. Nutrient sensing, signaling and ageing: the role of IGF-1 and mTOR in ageing and age-related disease. Subcell Biochem. 2018;90:49–97.

    Article  CAS  PubMed  Google Scholar 

  106. Weichhart T. Mammalian target of rapamycin: a signaling kinase for every aspect of cellular life. Methods Mol Biol (Clifton, NJ). 2012;821:1–14.

    Article  CAS  Google Scholar 

  107. Fabrizio P, Pozza F, Pletcher SD, Gendron CM, Longo VD. Regulation of longevity and stress resistance by Sch9 in yeast. Science (New York, NY). 2001;292(5515):288–90.

    Article  CAS  Google Scholar 

  108. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature. 2003;426(6967):620.

    Article  CAS  PubMed  Google Scholar 

  109. Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol: CB. 2004;14(10):885–90.

    Article  CAS  PubMed  Google Scholar 

  110. Kaeberlein M, Powers RW 3rd, Steffen KK, Westman EA, Hu D, Dang N, et al. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science (New York, NY). 2005;310(5751):1193–6.

    Article  CAS  Google Scholar 

  111. Beevers CS, Li F, Liu L, Huang S. Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer. 2006;119(4):757–64.

    Article  CAS  PubMed  Google Scholar 

  112. Johnson SM, Gulhati P, Arrieta I, Wang X, Uchida T, Gao T, et al. Curcumin inhibits proliferation of colorectal carcinoma by modulating Akt/mTOR signaling. Anticancer Res. 2009;29(8):3185–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Lim HW, Lim HY, Wong KP. Uncoupling of oxidative phosphorylation by curcumin: implication of its cellular mechanism of action. Biochem Biophys Res Commun. 2009;389(1):187–92.

    Article  CAS  PubMed  Google Scholar 

  114. Ulgherait M, Rana A, Rera M, Graniel J, Walker DW. AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep. 2014;8(6):1767–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dumitrascu GR, Bucur O. Critical physiological and pathological functions of Forkhead Box O tumor suppressors. Discoveries (Craiova, Romania). 2013;1(1):e5.

    Article  PubMed  Google Scholar 

  116. Kim T, Davis J, Zhang AJ, He X, Mathews ST. Curcumin activates AMPK and suppresses gluconeogenic gene expression in hepatoma cells. Biochem Biophys Res Commun. 2009;388(2):377–82.

    Article  CAS  PubMed  Google Scholar 

  117. Stancu AL. AMPK activation can delay aging. Discoveries (Craiova, Romania). 2015;3(4):e53.

    Article  PubMed  Google Scholar 

  118. Liu Z, Cui C, Xu P, Dang R, Cai H, Liao D, et al. Curcumin activates AMPK pathway and regulates lipid metabolism in rats following prolonged clozapine exposure. Front Neurosci. 2017;11:558.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radical Biol Med. 2013;56:133–71.

    Article  CAS  Google Scholar 

  120. Yang Y, Duan W, Lin Y, Yi W, Liang Z, Yan J, et al. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury. Free Radic Biol Med. 2013;65:667–79.

    Article  CAS  PubMed  Google Scholar 

  121. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature. 2005;434(7029):113–8.

    Article  CAS  PubMed  Google Scholar 

  122. Chen K, An Y, Tie L, Pan Y, Li X. Curcumin protects neurons from glutamate-induced excitotoxicity by membrane anchored AKAP79-PKA interaction network. Evid-Based Complement Altern Med : eCAM. 2015;2015:706207.

    Article  Google Scholar 

  123. Lin CH, Lin CC, Ting WJ, Pai PY, Kuo CH, Ho TJ, et al. Resveratrol enhanced FOXO3 phosphorylation via synergetic activation of SIRT1 and PI3K/Akt signaling to improve the effects of exercise in elderly rat hearts. Age (Dordr). 2014;36(5):9705.

    Article  PubMed  Google Scholar 

  124. Sahin K, Pala R, Tuzcu M, Ozdemir O, Orhan C, Sahin N, et al. Curcumin prevents muscle damage by regulating NF-κB and Nrf2 pathways and improves performance: an in vivo model. J Inflamm Res. 2016;9:147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ray Hamidie RD, Yamada T, Ishizawa R, Saito Y, Masuda K. Curcumin treatment enhances the effect of exercise on mitochondrial biogenesis in skeletal muscle by incrseasing camp levels. Metab: Clin Exp. 2015;64(10):1334–47.

    Article  PubMed  Google Scholar 

  126. Huang WC, Chiu WC, Chuang HL, Tang DW, Lee ZM, Wei L, et al. Effect of curcumin supplementation on physiological fatigue and physical performance in mice. Nutrients. 2015;7(2):905–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer’s disease. Neurobiol Aging. 2021;107:86–95.

    Article  CAS  PubMed  Google Scholar 

  128. Fu Y, Yang J, Wang X, Yang P, Zhao Y, Li K, et al. Herbal compounds play a role in neuroprotection through the inhibition of microglial activation. J Immunol Res. 2018;2018:9348046.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Liu Z, Ran Y, Huang S, Wen S, Zhang W, Liu X, et al. Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front Aging Neurosci. 2017;9:233.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Yu Y, Shen Q, Lai Y, Park SY, Ou X, Lin D, et al. Anti-inflammatory effects of curcumin in microglial cells. Front Pharmacol. 2018;9:386.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hatami M, Abdolahi M, Soveyd N, Djalali M, Togha M, Honarvar NM. Molecular mechanisms of curcumin in neuroinflammatory disorders: a mini review of current evidences. Endocr Metab Immune Disord Drug Targets. 2019;19(3):247–58.

    Article  CAS  PubMed  Google Scholar 

  132. Kang G, Kong PJ, Yuh YJ, Lim SY, Yim SV, Chun W, et al. Curcumin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression by inhibiting activator protein 1 and nuclear factor kappab bindings in BV2 microglial cells. J Pharmacol Sci. 2004;94(3):325–8.

    Article  CAS  PubMed  Google Scholar 

  133. Parada E, Buendia I, Navarro E, Avendaño C, Egea J, López MG. Microglial HO-1 induction by curcumin provides antioxidant, antineuroinflammatory, and glioprotective effects. Mol Nutr Food Res. 2015;59(9):1690–700.

    Article  CAS  PubMed  Google Scholar 

  134. Wang Y, Yin Z, Gao L, Sun D, Hu X, Xue L, et al. Curcumin delays retinal degeneration by regulating microglia activation in the retina of rd1 mice. Cell Physiol Biochem: Int J Exp Cell Physiol, Biochem, Pharmacol. 2017;44(2):479–93.

    Article  Google Scholar 

  135. Funk JL, Schneider C. Perspective on improving the relevance, rigor, and reproducibility of botanical clinical trials: lessons learned from turmeric trials. Front Nutr. 2021;8:782912.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Giordano A, Tommonaro G. Curcumin and cancer. Nutrients. 2019;11(10):2376. https://doi.org/10.3390/nu11102376.

  137. Singh L, Sharma S, Xu S, Tewari D, Fang J. Curcumin as a natural remedy for atherosclerosis: a pharmacological review. Molecules. 2021;26(13):4036. https://doi.org/10.3390/molecules26134036.

  138. Šudomová M, Hassan STS. Nutraceutical curcumin with promising protection against herpesvirus infections and their associated inflammation: mechanisms and pathways. Microorganisms. 2021;9(2):292. https://doi.org/10.3390/microorganisms9020292.

  139. Kunihiro AG, Luis PB, Frye JB, Chew W, Chow HH, Schneider C, et al. Bone-specific metabolism of dietary polyphenols in resorptive bone diseases. Mol Nutr Food Res. 2020;64(14):e2000072.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kunihiro AG, Luis PB, Brickey JA, Frye JB, Chow HS, Schneider C, et al. Beta-glucuronidase catalyzes deconjugation and activation of curcumin-glucuronide in bone. J Nat Prod. 2019;82(3):500–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Krueger JG, Brunner PM. Interleukin-17 alters the biology of many cell types involved in the genesis of psoriasis, systemic inflammation and associated comorbidities. Exp Dermatol. 2018;27(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  142. Benham H, Norris P, Goodall J, Wechalekar MD, FitzGerald O, Szentpetery A, et al. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther. 2013;15(5):R136.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Zheng Y, Danilenko DM, Valdez P, Kasman I, Eastham-Anderson J, Wu J, et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature. 2007;445(7128):648–51.

    Article  CAS  PubMed  Google Scholar 

  144. Bahraini P, Rajabi M, Mansouri P, Sarafian G, Chalangari R, Azizian Z. Turmeric tonic as a treatment in scalp psoriasis: a randomized placebo-control clinical trial. J Cosmet Dermatol. 2018;17(3):461–6.

    Article  PubMed  Google Scholar 

  145. Schallreuter KU, Wood JM, Pittelkow MR, Buttner G, Swanson N, Korner C, et al. Increased monoamine oxidase A activity in the epidermis of patients with vitiligo. Arch Dermatol Res. 1996;288(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  146. Arca E, Taştan HB, Erbil AH, Sezer E, Koç E, Kurumlu Z. Narrow-band ultraviolet B as monotherapy and in combination with topical calcipotriol in the treatment of vitiligo. J Dermatol. 2006;33(5):338–43.

    Article  CAS  PubMed  Google Scholar 

  147. Asawanonda P, Klahan SO. Tetrahydrocurcuminoid cream plus targeted narrowband UVB phototherapy for vitiligo: a preliminary randomized controlled study. Photomed Laser Surg. 2010;28(5):679–84.

    Article  CAS  PubMed  Google Scholar 

  148. Mattson MP, Rydel RE. Alzheimer’s disease. Amyloid ox-tox transducers. Nature. 1996;382(6593):674–5.

    Article  CAS  PubMed  Google Scholar 

  149. Baum L, Lam CW, Cheung SK, Kwok T, Lui V, Tsoh J, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol. 2008;28(1):110–3.

    Article  PubMed  Google Scholar 

  150. Chen M, Du ZY, Zheng X, Li DL, Zhou RP, Zhang K. Use of curcumin in diagnosis, prevention, and treatment of Alzheimer’s disease. Neural Regen Res. 2018;13(4):742–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res. 2012;110(8):1097–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Li H, Sureda A, Devkota HP, Pittalà V, Barreca D, Silva AS, et al. Curcumin, the golden spice in treating cardiovascular diseases. Biotechnol Adv. 2020;38:107343.

    Article  CAS  PubMed  Google Scholar 

  153. Santos-Parker JR, Strahler TR, Bassett CJ, Bispham NZ, Chonchol MB, Seals DR. Curcumin supplementation improves vascular endothelial function in healthy middle-aged and older adults by increasing nitric oxide bioavailability and reducing oxidative stress. Aging. 2017;9(1):187–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sugawara J, Akazawa N, Miyaki A, Choi Y, Tanabe Y, Imai T, et al. Effect of endurance exercise training and curcumin intake on central arterial hemodynamics in postmenopausal women: pilot study. Am J Hypertens. 2012;25(6):651–6.

    Article  CAS  PubMed  Google Scholar 

  155. Akazawa N, Choi Y, Miyaki A, Tanabe Y, Sugawara J, Ajisaka R, et al. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr Res (New York, NY). 2012;32(10):795–9.

    Article  CAS  Google Scholar 

  156. Pungcharoenkul K, Thongnopnua P. Effect of different curcuminoid supplement dosages on total in vivo antioxidant capacity and cholesterol levels of healthy human subjects. Phytother Res: PTR. 2011;25(11):1721–6.

    Article  CAS  PubMed  Google Scholar 

  157. Panahi Y, Ahmadi Y, Teymouri M, Johnston TP, Sahebkar A. Curcumin as a potential candidate for treating hyperlipidemia: a review of cellular and metabolic mechanisms. J Cell Physiol. 2018;233(1):141–52.

    Article  CAS  PubMed  Google Scholar 

  158. DiSilvestro RA, Joseph E, Zhao S, Bomser J. Diverse effects of a low dose supplement of lipidated curcumin in healthy middle aged people. Nutr J. 2012;26(11):79.

    Article  Google Scholar 

  159. Lao CD, Ruffin MTT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Alternat Med. 2006;6:10.

    Article  Google Scholar 

  160. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res: Off J Am Assoc Cancer Res. 2004;10(20):6847–54.

    Article  CAS  Google Scholar 

  161. Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Alternat Complement Med (New York, NY). 2003;9(1):161–8.

    Article  Google Scholar 

  162. Hegde M, Girisa S, BharathwajChetty B, Vishwa R, Kunnumakkara AB. Curcumin formulations for better bioavailability: what we learned from clinical trials thus far? ACS Omega. 2023;8(12):10713–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Saraf-Bank S, Ahmadi A, Paknahad Z, Maracy M, Nourian M. Effects of curcumin on cardiovascular risk factors in obese and overweight adolescent girls: a randomized clinical trial. Sao Paulo Med J= Revista paulista de medicina. 2019;137(5):414–22.

    Article  PubMed  Google Scholar 

  164. Panahi Y, Saadat A, Beiraghdar F, Sahebkar A. Adjuvant therapy with bioavailability-boosted curcuminoids suppresses systemic inflammation and improves quality of life in patients with solid tumors: a randomized double-blind placebo-controlled trial. Phytother Res: PTR. 2014;28(10):1461–7.

    Article  CAS  PubMed  Google Scholar 

  165. Valizadeh H, Abdolmohammadi-Vahid S, Danshina S, Ziya Gencer M, Ammari A, Sadeghi A, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol. 2020;89(Pt B):107088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rahmani S, Asgary S, Askari G, Keshvari M, Hatamipour M, Feizi A, et al. Treatment of non-alcoholic fatty liver disease with curcumin: a randomized placebo-controlled trial. Phytother Res: PTR. 2016;30(9):1540–8.

    Article  CAS  PubMed  Google Scholar 

  167. Shep D, Khanwelkar C, Gade P, Karad S. Safety and efficacy of curcumin versus diclofenac in knee osteoarthritis: a randomized open-label parallel-arm study. Trials. 2019;20(1):214.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Steigerwalt R, Nebbioso M, Appendino G, Belcaro G, Ciammaichella G, Cornelli U, et al. Meriva®, a lecithinized curcumin delivery system, in diabetic microangiopathy and retinopathy. Panminerva Med. 2012;54(1 Suppl 4):11–6.

    CAS  PubMed  Google Scholar 

  169. Pivari F, Mingione A, Piazzini G, Ceccarani C, Ottaviano E, Brasacchio C, et al. Curcumin supplementation (Meriva(®)) modulates inflammation, lipid peroxidation and gut microbiota composition in chronic kidney disease. Nutrients. 2022;14(1).

  170. Appendino G, Belcaro G, Cornelli U, Luzzi R, Togni S, Dugall M, et al. Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study. Panminerva Med. 2011;53(3 Suppl 1):43–9.

    CAS  PubMed  Google Scholar 

  171. Belcaro G, Cesarone MR, Dugall M, Pellegrini L, Ledda A, Grossi MG, et al. Product-evaluation registry of Meriva®, a curcumin-phosphatidylcholine complex, for the complementary management of osteoarthritis. Panminerva Med. 2010;52(2 Suppl 1):55–62.

    CAS  PubMed  Google Scholar 

  172. Polasa K, Raghuram TC, Krishna TP, Krishnaswamy K. Effect of turmeric on urinary mutagens in smokers. Mutagenesis. 1992;7(2):107–9.

    Article  CAS  PubMed  Google Scholar 

  173. Holt PR, Katz S, Kirshoff R. Curcumin therapy in inflammatory bowel disease: a pilot study. Dig Dis Sci. 2005;50(11):2191–3.

    Article  PubMed  Google Scholar 

  174. Kalpravidh RW, Siritanaratkul N, Insain P, Charoensakdi R, Panichkul N, Hatairaktham S, et al. Improvement in oxidative stress and antioxidant parameters in beta-thalassemia/Hb E patients treated with curcuminoids. Clin Biochem. 2010;43(4–5):424–9.

    Article  CAS  PubMed  Google Scholar 

  175. Ide H, Tokiwa S, Sakamaki K, Nishio K, Isotani S, Muto S, et al. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate. 2010;70(10):1127–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our sincere gratitude goes to authors who contributed their time and expertise to accomplish this article.

Author information

Authors and Affiliations

Authors

Contributions

Mehran Izadi, Nariman Sadri, Amirhossein Abdi, and Mohammad Mahdi Raeis Zadeh contributed to hypothesis, data gathering, and writing the main text of the manuscript. Dorsa Jalali, Mohammad Mahdi Ghazimoradi, and Sara Shouri contributed to hypothesis, data gathering, designing figure and tables, and final editing. Safa Tahmasebi contributed to the writing, scientific and structural editing, hypothesis, correspondence, and verifying the manuscript before submission.

Corresponding author

Correspondence to Safa Tahmasebi.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Izadi, M., Sadri, N., Abdi, A. et al. Longevity and anti-aging effects of curcumin supplementation. GeroScience 46, 2933–2950 (2024). https://doi.org/10.1007/s11357-024-01092-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-024-01092-5

Keywords

Navigation