Skip to main content

Advertisement

Log in

Agrobacterium tumefaciens-mediated transformation of Phellodendron amurense Rupr. using mature-seed explants

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

An efficient transformation protocol was developed for Agrobacterium-mediated transformation of Phellodendron amurense Rupr. for using explants from mature seeds. The binary vector pCAMBIA1303, which contained hygromycin phosphotransferase (hptII) as a selectable marker gene and β-glucuronidase (GUS) as a reporter gene, was used for transformation studies. Different factors that affect survival of transformed buds, namely Agrobacterium infection method, bacterial strain, pre-culture duration, acetosyringone concentration, co-culture duration, and co-culture temperature were examined and optimized for transformation efficiency on the basis of GUS staining of hygromycin-resistant buds. Polymerase chain reaction (PCR), Southern blot and reverse transcription PCR confirmed the presence of the GUS gene. A transformation frequency of 13.1 % was achieved under optimized conditions for transformation (A. tumefaciens strain EHA105, 4 days co-cultivation at 4 °C, and infection of the pre-cultured mature-seed explants for 2 days). This is the first report of a successful genetic transformation protocol for P. amurense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

BAP:

6-Benzylaminopurine

2,4-D:

2,4-Dichlorophenoxyacetic acid

MS:

Murashige and Skoog

NAA:

α-Naphthaleneacetic acid

PCR:

Polymerase chain reaction

TDZ:

Thidiazuron

References

  1. Aggarwal D, Kumar A, Reddy MS (2011) Agrobacterium tumefaciens mediated genetic transformation of selected elite clone(s) of Eucalyptus tereticornis. Acta Physiol Plant 33:1603–1611

    Article  CAS  Google Scholar 

  2. Ariyoshi K (1986) Plantlet formation by intrapetiolar bud culture of Phellodendron amurense Rupr. For Tree Breed 138:24–26

    Google Scholar 

  3. Azad MAK, Yokota S, Ohkubo T, Andoh Y, Yahara S, Yoshizawa N (2004) Micropropagation of plantlets through callus in Kihada (Phellodendron amurense Rupr.). J Soc High Technol Agric 16:122–130

    Article  CAS  Google Scholar 

  4. Azad MAK, Yokota S, Ohkubo T, Andoh Y, Yahara S, Yoshizawa N (2005) In vitro regeneration of the medicinal woody plant Phellodendron amurense Rupr. through excised leaves. Plant Cell Tissue Organ Cult 80:43–50

    Article  Google Scholar 

  5. Azria D, Bhalla PL (2011) Agrobacterium-mediated transformation of Australian rice varieties and promoter analysis of major pollen allergen gene, Ory s 1. Plant Cell Rep 30:1673–1681

    Article  PubMed  CAS  Google Scholar 

  6. Bartlett JG, Alves SC, Smedley M, Snape JW, Harwood WA (2008) High-throughput Agrobacterium-mediated barley transformation. Plant Methods 4:22

    Article  PubMed  Google Scholar 

  7. Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  PubMed  CAS  Google Scholar 

  8. Ceasar SA, Ignacimuthu S (2011) Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Rep 30:1759–1770

    Article  PubMed  Google Scholar 

  9. Cheng M, Jarret RL, Li Z, Xing A, Demski JW (1996) Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens. Plant Cell Rep 15:653–657

    Article  CAS  Google Scholar 

  10. Ding LP, Li SC, Gao JM, Wang YS, Yang GX, He GY (2009) Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat. Mol Biol Rep 36:29–36

    Article  PubMed  CAS  Google Scholar 

  11. Ghimire BK, Seong ES, Goh EJ, Kim NY, Kang WH, Kim EH, Yu CY, Chung IM (2010) High-frequency direct shoot regeneration from Drymaria cordata Willd. leaves. Plant Cell Tissue Organ Cult 100:209–217

    Article  Google Scholar 

  12. Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29:9–17

    Article  PubMed  CAS  Google Scholar 

  13. Holsters M, de Waele D, Depicker A, Messens E, van Montagu M, Schell J (1978) Transfection and transformation of Agrobacterium tumefaciens. Mol Gen Genet 163:181–187

    Article  PubMed  CAS  Google Scholar 

  14. Hu T, Metz S, Chay C, Chay C, Zhou HP, Biest N, Chen G, Cheng M, Feng X, Radionenko M, Lu F, Fry J (2003) Agrobacterium-mediated large-scale transformation of wheat (Triticum aestivum L.) using glyphosate selection. Plant Cell Rep 21:1010–1019

    Article  PubMed  CAS  Google Scholar 

  15. Huang X, Wei Z (2005) Successful Agrobacterium-mediated genetic transformation of maize elite inbred lines. Plant Cell Tissue Organ Cult 83:187–200

    Article  Google Scholar 

  16. Ikuta A, Hakamura T, Urabe H (1998) Indolopyridoquinazoline, furoquinoline and canthinone type alkaloids from Phellodendron amurense callus tissues. Phytochemistry 48:285–291

    Article  CAS  Google Scholar 

  17. Kumar KG, Anand KGV, Reddy MP (2010) Shoot regeneration from cotyledonary leaf explants of Jatropha curcas: a biodiesel plant. Acta Physiol Plant 32:917–924

    Article  Google Scholar 

  18. Jaakola L, Pirttilä AM, Halonen M, Hohtola A (2001) Isolation of high quality RNA from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19:201–213

    Article  PubMed  CAS  Google Scholar 

  19. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  20. Merkle S, Dean JFD (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302

    Article  PubMed  CAS  Google Scholar 

  21. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  22. Newhouse AE, Schrodt F, Liang H, Maynard CA, Powell WA (2007) Transgenic American elm shows reduced Dutch elm disease symptoms and normal mycorrhizal colonization. Plant Cell Rep 26:977–987

    Article  PubMed  CAS  Google Scholar 

  23. Polin LD, Liang H, Rothrock RE, Nishii M, Diehl DL, Newhouse AE, Nairn CJ, Powell WA, Maynard CA (2006) Agrobacterium-mediated transformation of American chestnut (Castanea dentata (Marsh.) Borkh.) somatic embryos. Plant Cell Tissue Organ Cult 84:69–78

    Article  CAS  Google Scholar 

  24. Ribas AF, Dechamp LE, Champion A, Bertrand B, Combes MC, Verdeil JL, Lapeyre F, Lashermes P, Etienne H (2011) Agrobacterium-mediated genetic transformation of Coffea arabica (L.) is greatly enhanced by using established embryogenic callus cultures. BMC Plant Biol 11:19

    Article  Google Scholar 

  25. Saika H, Toki S (2010) Mature seed-derived callus of the model indica rice variety Kasalath is highly competent in Agrobacterium-mediated transformation. Plant Cell Rep 29:1351–1364

    Article  PubMed  CAS  Google Scholar 

  26. Singh N, Mishra A, Joshi M, Jha B (2010) Microprojectile bombardment mediated genetic transformation of embryo axes and plant regeneration in cumin (Cuminum cyminum L.). Plant Cell Tissue Organ Cult 103:1–6

    Article  Google Scholar 

  27. Tang W, Newton RJ (2003) Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22:1–15

    Article  PubMed  CAS  Google Scholar 

  28. Wang H, Wang C, Liu H, Tang R, Zhang H (2011) An efficient Agrobacterium-mediated transformation and regeneration system for leaf explants of two elite aspen hybrid clones Populus alba × P. berolinensis and Populus davidiana × P. bolleana. Plant Cell Rep 30:2037–2044

    Article  PubMed  CAS  Google Scholar 

  29. Yang YX, Bao MZ, Liu GF (2010) Factors affecting Agrobacterium-mediated genetic transformation of embryogenic callus of Parthenocissus tricuspidata Planch. Plant Cell Tissue Organ Cult 102:373–380

    Article  CAS  Google Scholar 

  30. Yang JL, Zhou CG, Zhao B, Jin CL, Zhang T, Li CH (2011) Rapid direct adventitious shoot organogenesis and plant regeneration from mature seed explants of Phellodendron amurense Rupr. J Med Plant Res 5:4560–4565

    CAS  Google Scholar 

  31. Yevtushenko DP, Misra S (2010) Efficient Agrobacterium-mediated transformation of commercial hybrid poplar Populus nigra L. × P. maximowiczii A. Henry. Plant Cell Rep 29:211–229

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Key Project of Chinese National Programs for Fundamental Research and Development (973 Program: 2009CB119100), Program for Changjiang Scholars and Innovative Research Team in University (IRT1054), Fundamental Research Funds for the Central Universities (DL11EA02) and Sponsoring the Excellent Doctor Degree Dissertation in Northeast Forestry University (OPTP10-NEFU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Hao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Zhao, B., Kim, Y.B. et al. Agrobacterium tumefaciens-mediated transformation of Phellodendron amurense Rupr. using mature-seed explants. Mol Biol Rep 40, 281–288 (2013). https://doi.org/10.1007/s11033-012-2059-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2059-0

Keywords

Navigation