Skip to main content

Advertisement

Log in

Factors affecting Agrobacterium-mediated genetic transformation of embryogenic callus of Parthenocissus tricuspidata Planch

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A protocol for Agrobacterium-mediated transformation was developed for embryogenic callus of an excellent climber species, Parthenocissus tricuspidata. A. tumefaciens strain EHA105 or C58 harboring the pCAMBIA2301 binary vector with the neomycin phosphotransferase (nptII) and β-glucuronidase (uidA) gene was used. Factors affecting the transformation efficiency, including the Agrobacterium strains, co-cultivation time, Agrobacterium concentration, and infection time, were evaluated. Strain EHA105 proved to be significantly better than C58, and 4 days of co-culture was critical for transformation. An Agrobacterium suspension at a concentration of 0.5–0.7 × 108 cells ml−1 (OD600 = 0.5–0.7) and an infection time of 40 min was optimal for transformation. By applying these optimized parameters, we recovered six independent transformed shoots that were kanamycin-resistant and contained the nptII gene, as verified by polymerase chain reaction (PCR) analysis. Southern blot analysis confirmed that T-DNA was stably integrated into the genome of three out of six PCR-positive lines. Furthermore, histochemical GUS assay revealed the expression of the uidA gene in kanamycin-resistant calli, somatic embryos, and leaves of transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AS:

Acetosyringone

BA:

6-benzylaminopurine

Cx:

Cefotaxime

GUS:

β-glucuronidase

2,4-D:

2,4-dichlorophenoxyacetic acid

Kan:

Kanamycin

LB:

Luria–Bertani (medium)

MS:

Murashige and Skoog (1962)

NAA:

Naphthaleneacetic acid

nptII :

Neomycin phosphotransferase

CH:

Casein hydrolysate

PPF:

Photosynthetic photon flux

References

  • Ainsley PJ, Collins GG, Sedgley M (2001) Factors affecting and selection of transgenic calli in paper shell almond (Pruns dulcis Mill.). J Hort Sci Biotechnol 76:522–5281

    CAS  Google Scholar 

  • Akcay UC, Mahmoudian M, Kamci H, Yucel M, Oktem HA (2009) Agrobacterium tumefaciens-mediated genetic transformation of a recalcitrant grain legume, lentil (Lens culinaris Medik). Plant Cell Rep 28:407–417

    Article  PubMed  Google Scholar 

  • Bhatnagar S, Khurana P (2003) Agrobacterium tumefaciens-mediated transformation of Indian mulberry, Morus indica cv. K2: a time-phased screening strategy. Plant Cell Rep 21:669–675

    CAS  PubMed  Google Scholar 

  • Cervera M, Pina JA, Juárez J, Navarro L, Peña L (1998) Agrobacterium-mediated transformation of citrange: factors affecting transformation and regeneration. Plant Cell Rep 18:271–278

    Article  CAS  Google Scholar 

  • Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71:3672–3676

    Article  CAS  PubMed  Google Scholar 

  • Curtis IS, Power JB, Hedden P, Ward DA, Phillips A, Lowe KC, Davey MR (1999) A stable transformation system for the ornamental plant, Datura meteloides D.C. Plant Cell Rep 18:554–560

    Article  CAS  Google Scholar 

  • de Oliveira MLP, Febres VJ, Costa MGC, Moore GA, Otoni WC (2009) High-efficiency Agrobacterium-mediated transformation of citrus via sonication and vacuum infiltration. Plant Cell Rep 28:387–395

    Article  CAS  PubMed  Google Scholar 

  • Dhekney SA, Li ZT, Zimmerman TW, Gray DJ (2009) Factors influencing genetic transformation and plant regeneration of Vitis. Am J Enol Vitic 60:285–292

    CAS  Google Scholar 

  • Endress AG, Thomson WW (1976) Ultrastructural and cytochemical studies on the developing adhesive disc of Boston Ivy tendrils. Protoplasma 88:315–331

    Article  Google Scholar 

  • Fu YR, Sun ZY, Zhao LJ, Han Y (2005) Preliminary study on interspecific incompatibility between Parthenocissus tricuspidata and P. quinquefolia. For Res (China) 18:52–56

    CAS  Google Scholar 

  • Gu XF, Meng H, Qi G, Zhang JR (2008) Agrobacterium-mediated transformation of the winter jujube (Zizyphus jujuba Mill.). Plant Cell Tiss Org Cult 94(1):23–32

    Article  CAS  Google Scholar 

  • Hiei Y, Komari K, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205–218

    Article  CAS  PubMed  Google Scholar 

  • Holland L, Gemmell JE, Charity JA, Walter C (1997) Foreign gene transfer into Pinus radiata cotyledons by Agrobacterium tumefaciens. NZ J For Sci 27:289–304

    CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium vectors for plant transformation. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Jin SX, Zhang XL, Liang SG, Nie YC, Guo XP, Huang C (2005) Factors affecting transformation efficiency of embryogenic callus of Upland cotton (Gossypium hirsutum) with Agrobacterium tumefaciens. Plant Cell Tiss Org Cult 81:229–237

    Article  CAS  Google Scholar 

  • Joseph Lopez S, Raj Kumar R, Pius PK, Muraleedharan N (2004) Agrobacterium tumefaciens-mediated genetic transformation in tea (Camellia sinensis [L.] O. Kuntze). Plant Mol Biol Rep 22:201–202

    Article  Google Scholar 

  • Jube S, Borthakur D (2009) Development of an Agrobacterium-mediated transformation protocol for the tree-legume Leucaena leucocephala using immature zygotic embryos. Plant Cell Tiss Org Cult 96:325–333

    Article  Google Scholar 

  • Kondo T, Hasegawa H, Suzuki M (2000) Transformation and regeneration of garlic (Allium sativum L.) by Agrobacterium-mediated gene transfer. Plant Cell Rep 19:989–993

    Article  CAS  Google Scholar 

  • Leelavathi S, Sunnichan VG, Kumria R, Vijaykanth GP, Bhatnagar RK, Reddy VS (2004) A simple and rapid Agrobacterium-mediated transformation protocol for cotton (Gossypium hirsutum L.): embryogenic calli as a source to generate large numbers of transgenic plants. Plant Cell Rep 22:465–470

    Article  CAS  PubMed  Google Scholar 

  • Li HQ, Xu J, Chen L, Li MR (2007a) Establishment of an efficient Agrobacterium tumefaciens-mediated leaf disc transformation of Thellungiella halophila. Plant Cell Rep 26:1785–1789

    Article  CAS  PubMed  Google Scholar 

  • Li ZN, Fang F, Liu GF, Bao MZ (2007b) Stable Agrobacterium-mediated genetic transformation of London plane tree (Platanus acerifolia Willd.). Plant Cell Rep 26:641–650

    Article  CAS  PubMed  Google Scholar 

  • Li ZT, Dhekney SA, Dutt M, Gray DJ (2008) An improved protocol for Agrobacterium-mediated transformation of grapevine (Vitis vinifera L.). Plant Cell Tiss Org Cult 93(3):311–321

    Article  Google Scholar 

  • López-Pérez AJ, Velasco L, Pazos-Navarro M, Dabauza M (2008) Development of highly efficient genetic transformation protocols for table grape Sugraone and Crimson Seedless at low Agrobacterium density. Plant Cell Tiss Org Cult 94:189–199

    Article  Google Scholar 

  • Mohri T, Mukai Y, Shinohara K (1997) Agrobacterium tumefaciens-mediated transformation of Japanese white birch (Betula platyphylla var. japonica). Plant Sci 127:53–60

    Article  CAS  Google Scholar 

  • Montoro P, Rattana W, Pujade-Renaud V, Michaux-Ferrire N, Monkolsook Y, Kanthapura S, Adunsadthapong R (2003) Production of Hevea brasiliensis transgenic embryogenic callus lines by Agrobacterium tumefaciens: roles of calcium. Plant Cell Rep 21:1095–1102

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakano T, Hoshino Y, Mii M (1994) Regeneration of transgenic plants of grapevine (Vitis vinifera L.) via Agrobacterium rhizogenes-mediated transformation of embryogenic calli. J Exp Bot 45:649–656

    Article  CAS  Google Scholar 

  • Okinaka T, Yamauchi K, Hujii E (1988) Several conditions of wall adhesion of Boston ivy. Jap Landscape Archit 51:102–107

    Google Scholar 

  • Rashid H, Yokoi S, Toriyama K, Hinata K (1996) Transgenic plant production mediated by Agrobacterium in Indica rice. Plant Cell Rep 15:727–730

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • SAS Institute (1997) SAS/STAT user’s guide, release 6.12. SAS Institute, Cary, NC

    Google Scholar 

  • Scorza R, Cordts JM, Ramming DW, Emershad RL (1995) Transformation of grape (Vitis vinifera L.) zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep 14:589–592

    Article  CAS  Google Scholar 

  • Suzuki S, Supaibulwatana K, Mii M, Nakano M (2001) Production of transgenic plants of the Liliaceous ornamental plant Agapanthus praecox ssp. orientalis (Leighton) Leighton via Agrobacterium-mediated transformation of embryogenic calli. Plant Sci 161:89–97

    Article  CAS  Google Scholar 

  • Vancanneyt G, Schmidt R, O’Connor-Sanchez A, Willmitzer L, Rocha-Sosa M (1990) Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol Gen Genet 220:245–250

    Article  CAS  PubMed  Google Scholar 

  • Vergauwe A, Van Geldre E, Inzé D, Van Montagu M, Van den Eeckhout E (1998) Factors influencing Agrobacterium tumefaciens-mediated transformation of Artemisia annua L. Plant Cell Rep 18:105–110

    Article  CAS  Google Scholar 

  • Xu QH, Zhang XL, Nie YC, Feng CD (2002) Genetic diversity evaluation of cultivars (G. hirsutum L.) resistant to Fusarium wilt by RAPD markers. Sci Agric Sin 35:272–276

    CAS  Google Scholar 

  • Yang YX, Liu GF, Bao MZ (2006) Somatic embryogenesis and plant regeneration from petioles of Parthenocissus tricuspidata Planch. In Vitro Cell Dev Biol Plant 42(6):520–524

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is supported by the 863 Project (2001AA244049) of the Ministry of Science and Technology of the People’s Republic of China. The authors gratefully acknowledge all colleagues of our laboratory for the constructive discussion and technical support. We also especially thank the two anonymous reviewers for their helpful suggestions and revisions to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Y., Bao, M. & Liu, G. Factors affecting Agrobacterium-mediated genetic transformation of embryogenic callus of Parthenocissus tricuspidata Planch. Plant Cell Tiss Organ Cult 102, 373–380 (2010). https://doi.org/10.1007/s11240-010-9742-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9742-4

Keywords

Navigation