Skip to main content
Log in

Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Fertile transgenic plants of peanut (Arachis hypogaea L. cv. New Mexico Valencia A) were produced using an Agrobacterium-mediated transformation system. Leaf section explants were inoculated with A. tumefaciens strain EHA105 harboring the binary vector pBI121 containing the genes for β-glucuronidase (GUS) and neomycin phosphotransferase II (NPTII). Approximately 10% of the shoots regenerated on selection medium were GUS-positive. Five independent transformation events resulted in the production of 52 fertile transgenic peanut plants. On average, 240 d were required between seed germination for explant preparation and the production of mature t1 seed by T0 plants. Molecular analysis of transgenic plants confirmed the stable integration of the transgenes into the peanut genome. GUS expression segregated in a 3∶1 Mendelian ratio in most T1 generation plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GUS:

β-glucuronidase

NPTII:

neomycin-phosphotransferase II

MS:

medium, Murashige and Skoog medium (1962)

BA:

N6, enzyladenine

NAA:

1-naphthaleneacetic acid

References

  • Brar GS, Cohen BA, Vick CL, Johnson GW (1994) Plant J 5:745–753

    Google Scholar 

  • Chan MT, Chang HH, Ho SL, Tong WF, Yu SM (1993) Plant Mol Biol 22:491–506

    Google Scholar 

  • Cheng M, Hsi DCH, Phillips GC (1992) Peanut Sci 19:82–87

    Google Scholar 

  • Cheng M, Hsi DCH, Phillips GC (1994) Peanut Sci 22:82–88

    Google Scholar 

  • Chengalrayan K, Sathaye SS, Hazra S (1994) Plant Cell Reports 13:578–581

    Google Scholar 

  • Davies DR, Hamilton J, Mullineaux P (1993) Plant Cell Reports 12:180–183

    Google Scholar 

  • Eapen S, George L (1994) Plant Cell Reports 13:582–586

    Google Scholar 

  • Franklin CI, Shorrosh KM, Trieu AN, Cassidy BG, Nelson RS (1993) Transgen Res 2:321–324

    Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Exp Cell Res 50:151–158

    CAS  PubMed  Google Scholar 

  • Gasser CS, Fraley RT (1989) Science 244:1293–1299

    Google Scholar 

  • Gould J, Dever H, Hasegawa O, Ulian EC, Perterson G, Smith RH (1990) Plant Physiol 95:426–434

    Google Scholar 

  • Hadfi K, Bastschauer A (1994) Plant Cell Reports 13:130–134

    Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Hood EE, Helmer GL, Fraley RT, Chilton M (1986) J Bacteriol 168:1291–1301

    CAS  PubMed  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) Science 227:1229–1231

    CAS  Google Scholar 

  • James DJ, Uratsu S, Cheng J, Negri P, Viss P, Dandekar AM (1993) Plant Cell Reports 12:559–563

    Google Scholar 

  • Jefferson RA (1987) Plant Mol Biol Rep 5:387–405

    CAS  Google Scholar 

  • Kaneyoshi J, Kobayashi S, Nakamura Y, Shigemoto N, Doi Y (1994) Plant Cell Reports 13:541–545

    Google Scholar 

  • Lacorte C, Mansur E, Timmerman B, Cordeiro AR (1991) Plant Cell Reports 10:354–357

    Google Scholar 

  • Linn F, Heidmann I, Saedler H, Meyer P (1990) Mol Gen Genet 222:329–336

    Google Scholar 

  • Mansur EA, Lacorte C, de Freitas VG, de Oliveira DE, Timmerman B, Cordeiro AR (1993) Plant Sci 89:93–99

    Google Scholar 

  • McKently AM, Moore GA, Gardner FP (1991) Crop Sci 31:833–837

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Okker RJH, Spaink H, Hille J, van Brussel TAN, Lugtenberg B, Schilperoort RA (1984) Nature 312:564–566

    Google Scholar 

  • Ozias-Akins P, Schnall JA, Anderson WF, Singsit C, Clemente TE, Adang MJ, Weissinger AK (1993) Plant Sci 93:185–194

    Google Scholar 

  • Roger SO, Bendich AJ (1985) Plant Mol Biol 5:69–76

    Google Scholar 

  • Schafer W, Gorz A, Kahl G (1987) Nature 327:529–532

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98:503–517

    CAS  PubMed  Google Scholar 

  • Stachel SE, Messens E, Montagu MV, Zambryski P (1985) Nature 318:624–629

    Google Scholar 

  • Stachel SE, Nester EW, Zambryski PC (1986) Proc Natl Acad Sci (USA) 83:379–383

    Google Scholar 

  • Vancanneyt G, Schmidt R, O'Connor-Sanchez A (1990) Mol Gen Genet 220:245–250

    CAS  PubMed  Google Scholar 

  • Zambryski PC (1992) Annu Rev Plant Physiol Plant Mol Biol 43:465–490

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G. C. Phillips

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, M., Jarret, R.L., Li, Z. et al. Production of fertile transgenic peanut (Arachis hypogaea L.) plants using Agrobacterium tumefaciens . Plant Cell Reports 15, 653–657 (1996). https://doi.org/10.1007/BF00231918

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00231918

Keywords

Navigation