Skip to main content
Log in

Genetic transformation of conifers and its application in forest biotechnology

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Genetic modification of conifers through gene transfer technology is now an important field in forest biotechnology. Two basic methodologies, particle bombardment and Agrobacterium-mediated transformation, have been used on conifers. The use of particle bombardment has produced stable transgenic plants in Picea abies, P. glauca, P. mariana, and Pinus radiata. Transgenic plants have been produced from Larix decidua, Picea abies, P. glauca, P. mariana, Pinus strobus, P. taeda, and P. radiata via Agrobacterium-mediated transformation. Agrobacterium-mediated transformation has advantages over particle bombardment such as a simpler integration pattern and a limited rearrangement in the introduced DNA. At present, genetic transformation of conifers has been directed toward improving growth rate, wood properties and quality, pest resistance, stress tolerance, and herbicide resistance, which will drive forestry to enter a new era of productivity and quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

35S :

35S promoter of cauliflower mosaic virus

4CL :

4-Coumarate–coenzyme A ligase

AEOMT :

Multi-functional O-methyltransferase

APHIS :

Animal Plant Health Inspection Agency

Bt :

Bacillus thuringensis toxin

CAld5H :

Coniferaldehyde 5-hydroxylase

CaMV :

Cauliflower mosaic virus

CAT :

Chloramphenicol acetyltransferase

EPSP :

5-Enolpyruvylshikimate 3-phosphate

EPA :

Environmental Protection Agency

GFP :

Green fluorescent protein

GUS :

β-Glucuronidase

Luc :

luciferase

NPT :

Neomycin phosphotransferase

USDA :

US Department of Agriculture

References

  • Baucher M, Chabbert B, Pilate G, Van Doorsselaere J, Tollier MT, Conil MP, Cornu D, Monties B, Van Montagu M, Inze D, Jouanin L, Boerjan W (1996) Red xylem and higher lignin extractability by down-regulating a cinnamyl alcohol dehydrogenase in poplar. Plant Physiol 112:1479–1490

    CAS  PubMed  Google Scholar 

  • Bekkaoui F, Pilon M, Laine E, Raju DSS, Crosby WL, Dunstan DL (1988) Transient gene expression in electroporated Picea glauca protoplasts. Plant Cell Rep 7:481–484

    CAS  Google Scholar 

  • Bekkaoui F, Dalta RSS, Pilon M, Tautorus TE, Crosby WL, Dunstan DI (1990) The effects of promoter on transient expression in conifer cell lines. Theor Appl Genet 79:535–359

    Google Scholar 

  • Benfey PN, Ren L, Chua N-H (1990) Combinational and synergistic properties of CaMV 35S enhancer subdomains. EMBO J 9:1685–1996

    CAS  PubMed  Google Scholar 

  • Bergmann BA, Stomp AM (1992) Effect of host plant genotype and growth rate on Agrobacterium tumefaciens-mediated gall formation in Pinus radiata. Phytopathology 82:1457–1462

    Google Scholar 

  • Birch RG (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    CAS  Google Scholar 

  • Birch RG, Bower R (1994) Principles of gene transfer using particle bombardment. In: Yang N-S, Christou P (eds) Particle bombardment technology for gene transfer. Oxford University Press, New York, pp 3–37

  • Bishop-Hurley SL, Zabkiewicz RJ, Grace L, Gardner RC, Wagner A, Walter C (2001) Conifer genetic engineering: transgenic Pinus radiata (D. Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Rep 20:235–243

    CAS  Google Scholar 

  • Bommineni VR, Chibbar RN, Dalta RSS, Tsang EWT (1993) Transformation of white spruce (Picea glauca) somatic embryos by microprojectile bombardment. Plant Cell Rep 13:17–23

    CAS  Google Scholar 

  • Bowler C, Slooten L, Vanderbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inze D (1991) Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J 10:1723–1732

    CAS  PubMed  Google Scholar 

  • Campbell MA, Kinlaw CS, Neale DB (1992) Expression of luciferase and β-glucuronidase in Pinus radiata suspension cells using electroporation and particle bombardment. Can J For Res 22:2014–2018

    CAS  Google Scholar 

  • Cerda F, Aquea F, Gebauer M, Medina C, Arce-Johnson P (2002) Stable transformation of Pinus radiata embryogenic tissue by Agrobacterium tumefaciens. Plant Cell Tissue Organ Cult 70:251–257

    Article  CAS  Google Scholar 

  • Charest PJ, Devantier Y, Ward C, Jones C, Schaffer U (1991) Transient expression of foreign chimeric genes in the gymnosperm hybrid larch following electroporation. Can J Bot 69:1731–1736

    Google Scholar 

  • Charest PJ, Calero N, Lachance D, Dalta RSS, Duchesne LC, Tsang EWT (1993) Microprojectile-DNA delivery in conifer species: factors affecting assessment of transient gene expression using the β-glucuronidase reporter gene. Plant Cell Rep 12:189–193

    Google Scholar 

  • Charest PJ, Devantier Y, Lachance D (1996) Stable genetic transformation of Picea mariana (Black spruce) via microprojectile bombardment. In Vitro Cell Dev Biol 32:91–99

    Google Scholar 

  • Charity JA, Holland L, Donaldson SS, Grace L, Walter C (2002) Agrobacterium-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell Tissue Organ Cult 70:51–60

    Article  CAS  Google Scholar 

  • Chiang VL (2002) From rags to riches. Nat Biotechnol 20:557–558

    Article  CAS  PubMed  Google Scholar 

  • Citovsky V, Wong ML, Zambryski P (1989) Cooperative interaction of Agrobacterium VirE2 protein with single-stranded DNA: implications for T-DNA transfer process. Proc Natl Acad Sci USA 86:1193–1197

    CAS  PubMed  Google Scholar 

  • Clapham DH, Ekberg I (1986) Induction of tumours by various strains of Agrobacterium tumefaciens on Abies nordmanniana and Picea abies. Scand J For Res 1:435–437

    Google Scholar 

  • Clapham D, Demel P, Elfstrand M, Koop HU, Sabala I, Von Arnold S (2000) Gene transfer by particle bombardment to embryogenic cultures of Picea abies and the production of transgenic plantlets. Scand J For Res 15:151–160

    Article  Google Scholar 

  • Comai L, Facciotti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317:741–744

    CAS  Google Scholar 

  • Dandekar AM, Gupta PK, Durzan DJ, Knauf V (1987) Transformation and foreign gene expression in micropropagated Douglas-fir (Pseudotsuga menziesii). Biotechnology 5:587–590

    CAS  Google Scholar 

  • DeCleene M, DeLey J (1976) The host range of crown gall. Bot Rev 42:389–466

    Google Scholar 

  • Dekker-Robertson DL, Libby WJ (1998) American forest policy-global ethical tradeoffs. Bioscience 48:471–477

    Google Scholar 

  • Dillen W, De Clercq J, Kapila J, Zambre M, Van Montagu M, Angenon G (1997) The effect of temperature on Agrobacterium tumefaciens-mediated gene transfer to plants. Plant J 12:1459–1463

    CAS  Google Scholar 

  • Diner AM (1999) Genetic transformation of Pinus palustris (longleaf pine). In: Bajaj YPS (ed) Transgenic trees. Biotechnology in agriculture and forestry, vol. 44. Springer, Berlin Heidelberg New York, pp 185–192

  • Diner AM, Karnosky DF (1987) Differential responses of two conifers to in vitro inoculation with Agrobacterium rhizogenes. Eur J Forest Pathol 17:211–216

    Google Scholar 

  • Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP (2002) Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol 43:1407–1420

    Article  CAS  PubMed  Google Scholar 

  • Duchesne LC, Charest PJ (1991) Transient expression of the β-glucuronidase gene in embryogenic callus of Picea mariana following microprojection. Plant Cell Rep 10:191–194

    CAS  Google Scholar 

  • Duchesne LC, Lelu MA, Aderkas PV, Charest PJ (1993) Microprojectile-mediated DNA delivery in haploid and diploid embryogenic cells of Larix spp. Can J For Res 23:312–316

    CAS  Google Scholar 

  • Elfstrand M, Fossdal CG, Sitbon F, Olsson O, Lonneborg A, von Arnold S (2001) Overexpression of the endogenous peroxidase-like gene spi 2 in transgenic Norway spruce plants results in increased total peroxidase activity and reduced growth. Plant Cell Rep 20:596–603

    Article  CAS  Google Scholar 

  • Ellis D, Roberts D, Sutton B, Lazaroff W, Webb D, Flinn B (1989) Transformation of white spruce and other conifer species by Agrobacterium tumefaciens. Plant Cell Rep 8:16–20

    CAS  Google Scholar 

  • Ellis DD, McCabe D, Russell D, Martinell B, McCown BH (1991) Expression of inducible angiosperm promoters in a gymnosperm, Picea glauca (white spruce). Plant Mol Biol 19:19–27

    Google Scholar 

  • Ellis DD, McCabe DE, Mcinnis S, Ramachandran R, Russell DR, Wallace KM, Martinell BJ, Roberts DR, Raffa KF, McCown BH (1993) Stable transformation of Picea glauca by particle acceleration. Biotechnology 11:84–89

    CAS  Google Scholar 

  • Fenning TM, Gershenzon J (2002) Where will the wood come from? Plantation forests and the role of biotechnology. Trends Biotechnol 20:291–296

    Article  CAS  PubMed  Google Scholar 

  • Fernando DD, Owens JN, Misra S (2000) Transient gene expression in pine pollen tubes following particle bombardment. Plant Cell Rep 19:224–228

    Article  CAS  Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L (1987) Agrobacterium mediated transformation and regeneration of Populus. Mol Gen Genet 206:192–199

    CAS  Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant-cells. Plant Cell Rep 11:323–328

    CAS  Google Scholar 

  • Fire A (1999) RNA-triggered gene silencing. Trends Genet 15:358–363

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  • Fladung M (1999) Gene stability in transgenic aspen-Populus. I. Flanking DNA sequences and T-DNA structure. Mol Gen Genet 260:574–581

    CAS  PubMed  Google Scholar 

  • Godwin I, Gordon T, Ford-Lloyd B, Newbury HJ (1991) The effects of acetosyringone and pH on Agrobacterium-mediated transformation vary according to plant species. Plant Cell Rep 9:671–675

    CAS  Google Scholar 

  • Goldfarb B, Strauss SH, Howe GT, Zaerr JB (1991) Transient gene expression of microprojectile-introduced DNA in Douglas-fir cotyledons. Plant Cell Rep 10:517–521

    CAS  Google Scholar 

  • Gomord V, Faye L (1996) Signals and mechanisms involved in intracellular transport of secreted proteins in plants. Plant Physiol Biochem 34:165–181

    CAS  Google Scholar 

  • Gould JH, Zhou YX, Padmanabhan V, Magallanes-Cedeno ME, Newton RJ (2002) Transformation and regeneration of loblolly pine: shoot apex inoculation with Agrobacterium. Mol Breed 10:131–141

    Google Scholar 

  • Grevelding C, Fantes V, Kemper E, Schell J, Masterson R (1993) Single-copy T-DNA insertions in Arabidopsis are the predominant form of integration in root-derived transgenics, whereas multiple insertions are found in leaf discs. Plant Mol Biol 23:847–860

    CAS  PubMed  Google Scholar 

  • Gupta PK, Dandekar AM, Durzan DJ (1988) Somatic proembryo formation and transient expression of a luciferase gene in Douglas fir and loblolly pine protoplasts. Plant Sci 58:85–92

    Article  CAS  Google Scholar 

  • Hansen G, Das A, Chilton M-D (1994) Constitutive expression of the virulence genes improves the efficiency of plant transformation by Agrobacterium. Proc Natl Acad Sci USA 91:7603–7607

    Google Scholar 

  • Herschbach C, Kopriva S (2002) Transgenic trees as tools in tree and plant physiology. Trees 16:250–261

    Article  CAS  Google Scholar 

  • Hicks GR, Smith HMS, Shieh M, Raikhel NV (1995) Three classes of nuclear import signals bind to plant nuclei. Plant Physiol 107:1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir and T-region of Agrobacterium tumefaciens Ti plasmid. Nature 303:179–180

    CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    CAS  Google Scholar 

  • Huang Y, Diner AM, Karnosky DF (1991) Agrobacterium rhizogenes-mediated genetic transformation and regeneration of a conifer: Larix decidua. In Vitro Cell Dev Biol 27:201–207

    Google Scholar 

  • Humara J M, Lopez M, Ordas R J (1999) Agrobacterium tumefaciens-mediated transformation of Pinus pinea L. cotyledons: an assessment of factors influencing the efficiency of uidA gene transfer. Plant Cell Rep 19:51–58

    Google Scholar 

  • James DJ, Uratsu S, Cheng J, Negri P, Viss P, Dandekar AM (1993) Acetosyringone and osmoprotectants like betaine or proline synergistically enhance Agrobacterium-mediated transformation of apple. Plant Cell Rep 12:559–563

    CAS  Google Scholar 

  • James R, DiFazio S P, Brunner A, Strauss S H (1998) Environmental effects of genetic engineering of woody biomass crops. Biomass Bioenergy 14:403–414

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed  Google Scholar 

  • Kim JW, Minamikawa T (1996) Transformation and regeneration of French bean plants by the particle bombardment process. Plant Sci 117:131–138

    Article  CAS  Google Scholar 

  • Klimaszewska K, Devantier Y, Lachance D, Lelu MA, Charest PJ (1997) Larix laricina (tamarack): somatic embryogenesis and genetic transformation. Can J For Res 27:538–550

    Article  Google Scholar 

  • Klimaszewska K, Lachance D, Pelletier G, Lelu M-A, Seguin A (2001) Regeneration of transgenic Picea glauca, P. mariana and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 37:748–755

    CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    CAS  Google Scholar 

  • Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740

    CAS  PubMed  Google Scholar 

  • Le VQ, Belles-Isles J, Dusabenyagasani M, Tremblay FM (2001) An improved procedure for production of white spruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens. J Exp Bot 52:2089–2095

    CAS  PubMed  Google Scholar 

  • Leple JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Rep 11:137–141

    CAS  Google Scholar 

  • Levee V, Lelu MA, Jouanin L, Cornu D, Pilate G (1997) Agrobacterium tumefaciens-mediated transformation of hybrid larch (Larix kaempferi×L. decidua) and transgenic plant regeneration. Plant Cell Rep 16:680–685

    Google Scholar 

  • Levee V, Garin E, Klimaszewska K, Seguin A, (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol Breed 5:429–440

    Article  CAS  Google Scholar 

  • Li L, Zhou YH, Cheng XF, Sun JY, Marita JM, Ralph J, Chiang VL (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. Proc Natl Acad Sci USA 100:4939–4944

    Article  CAS  PubMed  Google Scholar 

  • Lindroth AM, Gronroos R, Clapham D, Svensson J, von Arnold S (1999) Ubiquitous and tissue-specific gus expression in transgenic roots conferred by six different promoters in one coniferous and three angiosperm species. Plant Cell Rep 18:820–828

    Google Scholar 

  • Loopstra CA, Stomp AM, Sederoff RR (1990) Agrobacterium-mediated DNA transfer in sugar pine. Plant Mol Biol 15:1–9

    CAS  PubMed  Google Scholar 

  • Lucier AA, Hinchee M, McCullough RB (2001) Biotechnology and the forest products industry. In: Strauss SH, Bradshaw HD (eds) Proceedings of the first international symposium on ecological and society aspect of transgenic plantations, College of Forestry, Oregon State University, pp 57–61

  • Mathews JH, Campbell MM (2000) The advantages and disadvantages of the application of genetic engineering to forest trees: a discussion. Forestry 73:371–380

    Google Scholar 

  • McAfee BJ, White EE, Pelcher LE, Lapp MS (1993) Root induction in pine (Pinus) and larch (Larix) spp. Using Agrobacterium rhizogenes. Plant Cell Tissue Organ Cult 34:53–62

    Google Scholar 

  • McLean MA, Charest PJ (2000) The regulation of transgenic trees in North America. Silvae Genet 49:233–239

    Google Scholar 

  • Meilan R, Han KH, Ma CP, James RR, Eaton JA, Stanton BJ, Hoien E, Crockett RP, Strauss SH (2000) Development of glyphosate-tolerant hybrid cottonwoods. Tappi J 83:164–166

    CAS  Google Scholar 

  • Merkle SA, Dean JFD (2000) Forest tree biotechnology. Curr Opin Biotechnol 11:298–302

    CAS  PubMed  Google Scholar 

  • Morris JW, Castle LA, Morris RO (1989) Efficacy of different Agrobacterium tumefaciens strains in transformation of pinaceous gymnosperms. Physiol Mol Plant Pathol 34:451–461

    Google Scholar 

  • Moyle R, Moody J, Phillips L, Walter C, Wagner A (2002) Isolation and characterization of a Pinus radiata lignin biosynthesis-related O-methyltransferase promoter. Plant Cell Rep 20:1052–1060

    Article  CAS  Google Scholar 

  • Mullin TJ, Bertrand S (1998) Environmental release of transgenic trees in Canada—potential benefits and assessment of biosafety. For Chron 74:203–219

    Google Scholar 

  • Newton RJ, Bloom J, Bivans DH, Jain SM (2001) Stable genetic transformation of conifers. Phytomorphology Golden Jubilee Issue, pp 421–434

  • Park SH, Lee BM, Salas MG, Srivatanakul M, Smith RH (2000) Shorter T-DNA or additional virulence genes improve Agrobacterium-mediated transformation. Theor Appl Genet 101:1015–1020

    Article  CAS  Google Scholar 

  • Pena L, Sequin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:5000–5506

    Google Scholar 

  • Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control genes. Proc Natl Acad Sci USA 88:3324–3328

    CAS  PubMed  Google Scholar 

  • Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leple JC, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat Biotechnol 20:607–612

    Article  CAS  PubMed  Google Scholar 

  • Reichel C, Mathur J, Eckes P, Langenkemper K, Koncz C (1996) Enhanced green fluorescence by the expression of an Aequorea victoria green fluorescent protein mutant in mono- and dicotyledonous plant cells. Proc Natl Acad Sci USA 93:5888–5893

    CAS  PubMed  Google Scholar 

  • Reiss B, Sprengle R, Will H, Schaller H (1984) A new sensitive method for qualitative and quantitative assay of neomycin phosphotransferase in crude cell extracts. Gene 30:211–217

    Article  CAS  PubMed  Google Scholar 

  • Richardson JP (1993) Transcription termination. Crit Rev Biochem Mol Biol 28:1–30

    CAS  PubMed  Google Scholar 

  • Robertson D, Weissinger AK, Ackley R, Glover S, Sederoff RR (1992) Genetic transformation of Norway spruce [Picea abies (L.) Karst] using somatic embryo explants by microprojectile bombardment. Plant Mol Biol 19:925–935

    CAS  PubMed  Google Scholar 

  • Rogers H J, Parkes H C (1995) Transgenic plants and the environment. J Exp Bot 46:467–488

    CAS  Google Scholar 

  • Rossi L, Horn B, Tinland B (1996) Integration of complete transferred DNA units is dependent on the activity of virulence E2 protein of Agrobacterium tumefaciens. Proc Natl Acad Sci USA 93:126–130

    Article  CAS  PubMed  Google Scholar 

  • Rugh Cl, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    CAS  PubMed  Google Scholar 

  • Sederoff R, Stomp AM, Chilton WS, Moore LW (1986) Gene transfer into loblolly pine by Agrobacterium tumefaciens. Biotechnology 4:647–649

    CAS  Google Scholar 

  • Sheikholeslam SN, Weeks DP (1987) Acetosyringone promotes high frequency transformation of Arabidopsis thaliana explants by Agrobacterium tumefaciens. Plant Mol Biol 8:291–298

    CAS  Google Scholar 

  • Sheng JS, Citovsky V (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8:1699–1710

    CAS  PubMed  Google Scholar 

  • Shin DI, Podila GK, Huang Y, Karnosky DF (1994) Transgenic larch expressing genes for herbicide and insect resistance. Can J For Res 24:2059–2067

    Google Scholar 

  • Smith RH, Hood EE (1995) Agrobacterium-tumefaciens transformation of monocotyledons. Crop Sci 35:301–309

    Google Scholar 

  • Stachel SE, Messens E, Montague MV, Zambryski P (1985) Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 318:624–629

    Google Scholar 

  • Stomp AM, Loopstra C, Chilton WS, Sederoff RR, Moore LW (1990) Extended host range of Agrobacterium tumefaciens in the genus Pinus. Plant Physiol 92:1226–1236

    Google Scholar 

  • Stomp AM, Weissinger A, Sederoff RR (1991) Transient expression from microprojectile-mediated DNA transfer in Pinus taeda. Plant Cell Rep 10:187–190

    Google Scholar 

  • Strauss SH, Bradshaw HD (eds) (2001) Proceedings of the First International Symposium on Ecological and Societal Aspect of Transgenic Plantations. College of Forestry, Oregon State University

  • Strauss SH, Rottmann WH, Brunner AM, Sheppard LA (1995) Genetic engineering of reproductive sterility in forest trees. Mol Breed 1:5–26

    CAS  Google Scholar 

  • Strauss SH, DiFazio SP, Meilan R (2001) Genetically modified poplars in context. For Chron 77:271–279

    Google Scholar 

  • Sutton B (2002) Commercial delivery of genetic improvement to conifer plantations using somatic embryogenesis. Ann For Sci 59:657–661

    Article  Google Scholar 

  • Tang W (2000) Peroxidase activity of desiccation-tolerant loblolly pine somatic embryos. In Vitro Cell Dev Biol Plant 36:488–491

    CAS  Google Scholar 

  • Tang W (2001) Agrobacterium-mediated transformation and assessment of factors influencing transgene expression in loblolly pine (Pinus taeda L.). Cell Res 11:237–243

    CAS  PubMed  Google Scholar 

  • Tang W, Ouyang F (1999) Plant regeneration via organogenesis from six families of loblolly pine. Plant Cell Tissue Organ Cult 58:223–226

    Article  Google Scholar 

  • Tang W, Ouyang F, Guo ZC (1998) Plant regeneration through organogenesis from callus induced from mature zygotic embryos of loblolly pine. Plant Cell Rep 17:557–560

    Article  CAS  Google Scholar 

  • Tang W, Sederoff R, Whetten R (2001) Regeneration of transgenic loblolly pine (Pinus taeda L.) from zygotic embryos transformed with Agrobacterium tumefaciens. Planta 213:981–989

    Google Scholar 

  • Tautorus TE, Bekkaoui F, Pilon M, Dalta RSS, Crosby WL, Fowke LC, Dunstan DI (1989) Factors affecting transient gene in electroporated black spruce (Picea mariana) and jack pine (Pinus banksiana) protoplasts. Theor Appl Genet 78:531–356

    Google Scholar 

  • Tian L, Seguin A, Charest PJ (1997) Expression of the green fluorescent protein gene in conifer tissues. Plant Cell Rep 16:267–271

    Article  CAS  Google Scholar 

  • Turner R, Foster GD (1995) The potential of plant viral translational enhancers in biotechnology for increased gene expression. Mol Biotechnol 3:225–236

    CAS  PubMed  Google Scholar 

  • Tzfira T, Citovsky V (2002) Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol 12:121–129

    CAS  PubMed  Google Scholar 

  • Tzfira T, Yarnitzky O, Vainstein A, Altman A (1996) Agrobacterium rhizogenes-mediated DNA transfer in Pinus halepensis Mill. Plant Cell Rep 16:26–31

    Google Scholar 

  • Tzfira T, Zuker A, Altman A (1998) Forest-tree biotechnology: genetic transformation and its application to future forests. Trends Biotechnol 16:439–446

    CAS  Google Scholar 

  • Van Raemdonck D, Jaziri M, Boerjan W, Baucher M (2001) Advances in the improvement of forest trees through biotechnology. Belg J Bot 134:64–78

    Google Scholar 

  • Van Wordragen MF, Dons JJM (1992) Agrobacterium tumefaciens-mediated transformation of recalcitrant crops. Plant Mol Biol Rep 10:12–36

    Google Scholar 

  • Villalobos-Amador E, Rodriguez-Hernandez G, Perez-Molphe-Balch E (2002) Organogenesis and Agrobacterium rhizogenes-induced rooting in Pinus maximartinezii Rzedowsky and P. pinceana Gordon. Plant Cell Rep 20:779–785

    Article  CAS  Google Scholar 

  • Walter C, Smith DR, Connett MB, Grace L, White DWR (1994) A biolistic approach for the transfer and expression of a uidA reporter gene in embryogenic cultures of Pinus radiata. Plant Cell Rep 14:69–74

    CAS  Google Scholar 

  • Walter C, Grace LJ, Wagner A, White DWR, Walden AR, Donaldson SS, Hinton H, Gardner RC, Smith DR (1998) Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep 17:460–469

    CAS  Google Scholar 

  • Walter C, Grace LJ, Donaldson SS (1999) An efficient biolistic transformation protocol for Picea abies embryogenic tissue and regeneration of transgenic plants. Can J For Res 29:1539–1546

    Article  Google Scholar 

  • Walter C, Charity J, Grace L, Hofig K, Moller R, Wagner A (2002) Gene technologies in Pinus radiata and Picea abies: tools for conifer biotechnology in the 21st century. Plant Cell Tissue Organ Cult 70:3–12

    Article  CAS  Google Scholar 

  • Wenck AR, Quinn M, Whetten RW, Pullman G, Sederoff R (1999) High-efficiency Agrobacterium-mediated transformation of Norway spruce (Picea abies) and loblolly pine (Pinus taeda). Plant Mol Biol 39:407–416

    Article  CAS  PubMed  Google Scholar 

  • Wilson SM, Thorpe TA, Moloney MM (1989) PEG-mediated expression of GUS and CAT genes in protoplasts from embryogenic suspension cultures of Picea glauca. Plant Cell Rep 7:704–707

    CAS  Google Scholar 

  • Wu L, Ueda T, Messing J (1995) The formation of mRNA 3′-ends in plants. Plant J 8:323–829

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Tang.

Additional information

Communicated by P.P. Kumar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, W., Newton, R.J. Genetic transformation of conifers and its application in forest biotechnology. Plant Cell Rep 22, 1–15 (2003). https://doi.org/10.1007/s00299-003-0670-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-003-0670-1

Keywords

Navigation