Advertisement

Molecular Breeding

, 38:91 | Cite as

Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6

  • Feifei Ma
  • Yunfeng Xu
  • Zhengqiang Ma
  • Lihui Li
  • Diaoguo An
Article
  • 350 Downloads

Abstract

Xiaoyan 6, one of the most important founder parents in wheat, possesses many superior agronomic traits and has played a crucial role in Chinese wheat breeding programs. In this study, a panel of 66 elite wheat accessions derived from Xiaoyan 6 was planted in four growing seasons; genome-wide association study (GWAS) was performed for six yield-related traits using the wheat 90K genotyping assay. A total of 803 significant marker-trait associations (MTAs) that explained up to 35.0% of the phenotypic variation were detected. Of these, the locus QTkw-5B which contains 19 MTAs for thousand kernel weight (TKW) was consistently detected in three growing seasons and confirmed in a recombinant inbred line (RIL) population by developing simple sequence repeats (SSR) and kompetitive allele-specific PCR (KASP) markers. The locus QPh-3A containing eight repetitive MTAs for plant height (PH) was consistently identified in all the four growing seasons and validated in a RIL population by developing SSR markers. The transmission of Xiaoyan 6 allele indicated that the favorite allele of QPh-3A was strongly selected in breeding programs. Comparing with previous studies, QTkw-5B and QPh-3A should be novel QTL. The locus QFss-2D for fertile spikelet number per spike (FSS) was identified and then validated in three bi-parental populations. This locus controlled various spike-related traits and may be a key spike polymorphic locus. This study could provide insight into dissecting yield-related traits in the breeding population and reliable molecular markers that might be valuable for marker-assisted selection in wheat high-yield breeding programs.

Keywords

Founder parent GWAS Wheat 90K SNP assay Yield-related traits KASP markers Common wheat 

Notes

Acknowledgements

We are grateful to Prof. Aimin Zhang from the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and Prof. Sishen Li from Shandong Agricultural University, for providing the XJ-RIL and ChSh-RIL populations, respectively. This research was financially supported by the National Key Research and Development Program of China (no. 2016YFD0100102), the National Natural Science Foundation of China (no. 31771787), and the National Basic Research Program of China (no. 2011CB100100).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All of the authors have read and have abided by the statement of ethical standards for manuscripts submitted to Molecular Breeding.

Supplementary material

11032_2018_837_MOESM1_ESM.pdf (189 kb)
Table S1 (PDF 188 kb)
11032_2018_837_MOESM2_ESM.pdf (154 kb)
Table S2 (PDF 154 kb)
11032_2018_837_MOESM3_ESM.pdf (871 kb)
Table S3 (PDF 870 kb)
11032_2018_837_MOESM4_ESM.pdf (129 kb)
Table S4 (PDF 129 kb)
11032_2018_837_MOESM5_ESM.pdf (185 kb)
Table S5 (PDF 185 kb)
11032_2018_837_MOESM6_ESM.pdf (150 kb)
Table S6 (PDF 150 kb)
11032_2018_837_MOESM7_ESM.pdf (145 kb)
Table S7 (PDF 145 kb)
11032_2018_837_MOESM8_ESM.pdf (1.9 mb)
ESM 1 (PDF 1994 kb)

References

  1. Ain Q, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X, He Z, Quraishi UM (2015) Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. Front Plant Sci 6:743CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ali ML, Baenziger PS, Al Ajlouni Z, Campbell BT, Gill KS, Eskridge KM, Mujeeb-Kazi A, Dweikat I (2011) Mapping QTL for agronomic traits on wheat chromosome 3A and a comparison of recombinant inbred chromosome line populations. Crop Sci 51:553–566CrossRefGoogle Scholar
  3. Atwell S, Huang YS, Vilhjalmsson BJ, Willems G, Horton M, Li Y, Meng D, Platt A, Tarone AM, Hu TT, Jiang R, Muliyati NW, Zhang X, Amer MA, Baxter I, Brachi B, Chory J, Dean C, Debieu M, de Meaux J, Ecker JR, Faure N, Kniskern JM, Jones JDG, Michael T, Nemri A, Roux F, Salt DE, Tang C, Todesco M, Traw MB, Weigel D, Marjoram P, Borevitz JO, Bergelson J, Nordborg M (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bordes J, Goudemand E, Duchalais L, Chevarin L, Oury FX, Heumez E, Lapierre A, Perretant MR, Rolland B, Beghin D, Laurent V, Le Gouis J, Storlie E, Robert O, Charmet G (2014) Genome-wide association mapping of three important traits using bread wheat elite breeding populations. Mol Breed 33:755–768CrossRefGoogle Scholar
  5. Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177CrossRefPubMedPubMedCentralGoogle Scholar
  6. Breseghello F, Sorrells ME (2007) QTL analysis of kernel size and shape in two hexaploid wheat mapping populations. Field Crops Res 101:172–179CrossRefGoogle Scholar
  7. Cheng R, Kong Z, Zhang L, Xie Q, Jia H, Yu D, Huang Y, Ma Z (2017) Mapping QTLs controlling kernel dimensions in a wheat inter-varietal RIL mapping population. Theor Appl Genet 130:1405–1414CrossRefPubMedGoogle Scholar
  8. Cuthbert JL, Somers DJ, Brûlé-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608CrossRefPubMedGoogle Scholar
  9. Dholakia B, Ammiraju J, Singh H, Lagu M, Röder M, Rao V, Dhaliwal H, Ranjekar P, Gupta V, Weber W (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395CrossRefGoogle Scholar
  10. Dong K, Ge P, Ma C, Wang K, Yan X, Gao L, Li X, Liu J, Ma W, Yan Y (2012) Albumin and globulin dynamics during grain development of elite Chinese wheat cultivar Xiaoyan 6. J Cereal Sci 56:615–622CrossRefGoogle Scholar
  11. Echeverry-Solarte M, Kumar A, Kianian S, Mantovani EE, Simsek S, Alamri MS, Mergoum M (2014) Genome-wide genetic dissection of supernumerary spikelet and related traits in common wheat. Plant Genome 7:3CrossRefGoogle Scholar
  12. Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127:791–807CrossRefPubMedGoogle Scholar
  13. Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042CrossRefPubMedGoogle Scholar
  14. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  15. Flint-Garcia SA, Thornsberry JM, IV B (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefPubMedGoogle Scholar
  16. Gao F, Wen W, Liu J, Rasheed A, Yin G, Xia X, Wu X, He Z (2015) Genome-wide linkage mapping of QTL for yield components, plant height and yield-related physiological traits in the Chinese wheat cross Zhou 8425B/Chinese Spring. Front Plant Sci 6:1099PubMedPubMedCentralGoogle Scholar
  17. Guo J, Hao C, Zhang Y, Zhang B, Cheng X, Qin L, Li T, Shi W, Chang X, Jing R (2015) Association and validation of yield-favored alleles in chinese cultivars of common wheat (Triticum aestivum L.). PLoS One 10:e0130029CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hai L, Guo H, Wagner C, Xiao S, Friedt W (2008) Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Sci 175:226–232CrossRefGoogle Scholar
  19. Hu Y, Zhu N, Wang X, Yi Q, Zhu D, Lai Y, Zhao Y (2013) Analysis of rice Snf2 family proteins and their potential roles in epigenetic regulation. Plant Physiol Biochem 70:33–42CrossRefPubMedGoogle Scholar
  20. Huang X, Cloutier S, Lycar L, Radovanovic N, Humphreys D, Noll J, Somers D, Brown P (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766CrossRefPubMedGoogle Scholar
  21. Huang Y, Kong Z, Wu X, Cheng R, Yu D, Ma Z (2015) Characterization of three wheat grain weight QTLs that differentially affect kernel dimensions. Theor Appl Genet 128:2437–2445CrossRefPubMedGoogle Scholar
  22. Jia H, Wan H, Yang S, Zhang Z, Kong Z, Xue S, Zhang L, Ma Z (2013) Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China's wheat breeding. Theor Appl Genet 126:2123–2139CrossRefPubMedGoogle Scholar
  23. Korzun V, Roder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109CrossRefGoogle Scholar
  24. Lee J-S, Sajise AGC, Gregorio GB, Kretzschmar T, Ismail AM, Wissuwa M (2017) Genetic dissection for zinc deficiency tolerance in rice using bi-parental mapping and association analysis. Theor Appl Genet 130:1903–1914CrossRefPubMedGoogle Scholar
  25. Li X-P, Lan S-Q, Liu Y-P, Gale MD, Worland TJ (2006) Effects of different Rht-B1b, Rht-D1b and Rht-B1c dwarfing genes on agronomic characteristics in wheat. Cereal Res Commun 34:919–924CrossRefGoogle Scholar
  26. Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T, Xu Y, Jiang F, Wang H, Li L (2007) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–178CrossRefGoogle Scholar
  27. Li Z, Li B, Tong Y (2008) The contribution of distant hybridization with decaploid Agropyron elongatum to wheat improvement in China. J Genet Genomics 35:451–456CrossRefPubMedGoogle Scholar
  28. Li N, Shi J, Wang X, Liu G, Wang H (2014) A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol 14:114CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liu Y, Zhang J, Hu Y, Chen J (2017) Dwarfing genes Rht4 and Rht-Blb affect plant height and key agronomic traits in common wheat under two water regimes. Field Crop Res 204:242–248CrossRefGoogle Scholar
  30. Lucas SJ, Salantur A, Yazar S, Budak H (2017) High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis. Funct Integr Genomics 17:667–685CrossRefPubMedGoogle Scholar
  31. Ma Z, Zhao D, Zhang C, Zhang Z, Xue S, Lin F, Kong Z, Tian D, Luo Q (2007) Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Mol Gen Genomics 277:31–42CrossRefGoogle Scholar
  32. Maccaferri M, El-Feki W, Nazemi G, Salvi S, Cane MA, Colalongo MC, Stefanelli S, Tuberosa R (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67:1161–1178CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mayer KF, Rogers J, Doležel J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, Sourdille P (2014) A chromosome-based draft sequence of the hexaploid bread wheat ( Triticum aestivum L.) genome. Science 345:1251788CrossRefGoogle Scholar
  34. McCartney C, Somers D, Humphreys D, Lukow O, Ames N, Noll J, Cloutier S, McCallum B (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × 'AC Domain'. Genome 48:870–883CrossRefPubMedGoogle Scholar
  35. Milner SG, Maccaferri M, Huang BE, Mantovani P, Massi A, Frascaroli E, Tuberosa R, Salvi S (2016) A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Plant Biotechnol J 14:735–748CrossRefPubMedGoogle Scholar
  36. Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S (2002) Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol 130:1152–1161CrossRefPubMedPubMedCentralGoogle Scholar
  37. Myles S, Peiffer J, Brown PJ, Ersoz ES, Zhang Z, Costich DE, Buckler ES (2009) Association mapping: critical considerations shift from genotyping to experimental design. Plant Cell 21:2194–2202CrossRefPubMedPubMedCentralGoogle Scholar
  38. Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723CrossRefPubMedGoogle Scholar
  39. Ott J, Wang J, Leal SM (2015) Genetic linkage analysis in the age of whole-genome sequencing. Nat Rev Genet 16:275–284CrossRefPubMedPubMedCentralGoogle Scholar
  40. Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W (2008) A physical map of the 1-gigabase bread wheat chromosome 3B. Science 322:101–104CrossRefPubMedGoogle Scholar
  41. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181CrossRefPubMedPubMedCentralGoogle Scholar
  42. Quarrie S, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J (2005) A high-density genetic map of hexaploid wheat ( Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880CrossRefPubMedGoogle Scholar
  43. Ramamoorthy R, Jiang S, Ramachandran S (2011) Oryza sativa Cytochrome P450 family member OsCYP96B4 reduces plant height in a transcript dosage dependent manner. Plos One 6:e28069CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ramirez-Gonzalez RH, Uauy C, Caccamo M (2015) PolyMarker: A fast polyploid primer design pipeline. Bioinformatics 31:2038–2039CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rasheed A, Wen W, Gao F, Zhai S, Jin H, Liu J, Guo Q, Zhang Y, Dreisigacker S, Xia X, He Z (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843–1860CrossRefPubMedGoogle Scholar
  46. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard R (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefPubMedGoogle Scholar
  47. Sajjad M, Khan SH, Ahmad MQ, Rasheed A, Mujeeb-Kazi A, Khan IA (2014) Association mapping identifies QTLs on wheat chromosome 3A for yield related traits. Cereal Res Commun 42:177–188CrossRefGoogle Scholar
  48. Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14CrossRefGoogle Scholar
  49. Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shi W, Hao C, Zhang Y, Cheng J, Zhang Z, Liu J, Yi X, Cheng X, Sun D, Xu Y, Zhang X, Cheng S, Guo P, Guo J (2017) A combined association mapping and linkage analysis of kernel number per spike in common wheat (Triticum aestivum L.). Front Plant Sci 8:1412CrossRefPubMedPubMedCentralGoogle Scholar
  51. Simmonds J, Scott P, Leverington-Waite M, Turner AS, Brinton J, Korzun V, Snape J, Uauy C (2014) Identification and independent validation of a stable yield and thousand grain weight QTL on chromosome 6A of hexaploid wheat (Triticum aestivum L.). BMC Plant Biol 14:191CrossRefPubMedPubMedCentralGoogle Scholar
  52. Snape JW, Foulkes MJ, Simmonds J, Leverington M, Fish LJ, Wang Y, Ciavarrella M (2007) Dissecting gene × environmental effects on wheat yields via QTL and physiological analysis. Euphytica 154:401–408CrossRefGoogle Scholar
  53. Su Z, Jin S, Lu Y, Zhang G, Chao S, Bai G (2016) Single nucleotide polymorphism tightly linked to a major QTL on chromosome 7A for both kernel length and kernel weight in wheat. Mol Breed 36:1–11CrossRefGoogle Scholar
  54. Sukumaran S, Dreisigacker S, Lopes M, Chavez P, Reynolds MP (2015) Genome-wide association study for grain yield and related traits in an elite spring wheat population grown in temperate irrigated environments. Theor Appl Genet 128:353–363CrossRefPubMedGoogle Scholar
  55. Sun X, Wu K, Zhao Y, Kong F, Han G, Jiang H, Huang X, Li R, Wang H, Li S (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624CrossRefGoogle Scholar
  56. Sun L, Li X, Fu Y, Zhu Z, Tan L, Liu F, Sun X, Sun X, Sun C (2013) GS6, a member of the GRAS gene family, negatively regulates grain size in rice. J Integr Plant Biol 55:938–949PubMedGoogle Scholar
  57. Sun C, Zhang F, Yan X, Zhang X, Dong Z, Cui D, Chen F (2017) Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol J 15:953–969CrossRefPubMedPubMedCentralGoogle Scholar
  58. Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212CrossRefGoogle Scholar
  59. Turner MK, Kolmer JA, Pumphrey MO, Bulli P, Chao S, Anderson JA (2017) Association mapping of leaf rust resistance loci in a spring wheat core collection. Theor Appl Genet 130:345–361CrossRefPubMedGoogle Scholar
  60. Vikhe P, Patil R, Chavan A, Oak M, Tamhankar S (2017) Mapping gibberellin-sensitive dwarfing locus Rht18 in durum wheat and development of SSR and SNP markers for selection in breeding. Mol Breed 37:28CrossRefGoogle Scholar
  61. Wang R, Hai L, Zhang X, You G, Yan C, Xiao S (2009) QTL mapping for grain filling rate and yieldrelated traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325CrossRefPubMedGoogle Scholar
  62. Wang L, Ge H, Hao C, Dong Y, Zhang X (2012) Identifying loci influencing 1,000-kernel weight in wheat by microsatellite screening for evidence of selection during breeding. PLoS One 7:e29432CrossRefPubMedPubMedCentralGoogle Scholar
  63. Wang Z, Liu Y, Shi H, Mo H, Wu F, Lin Y, Gao S, Wang J, Wei Y, Liu C, Zheng Y (2016) Identification and validation of novel low-tiller number QTL in common wheat. Theor Appl Genet 129:603–612CrossRefPubMedGoogle Scholar
  64. Wu X, Cheng R, Xue S, Kong Z, Wan H, Li G, Huang Y, Jia H, Jia J, Zhang L, Ma Z (2014) Precise mapping of a quantitative trait locus interval for spike length and grain weight in bread wheat (Triticum aestivum L.). Mol Breed 33:129–138CrossRefGoogle Scholar
  65. Wu Q, Chen Y, Zhou S, Fu L, Chen J, Xiao Y, Zhang D, Ouyang S, Zhao X, Cui Y, Zhang D, Liang Y, Wang Z, Xie J, Qin J, Wang G, Li D, Huang Y, Yu M, Lu P, Wang L, Wang L, Wang H, Dang C, Li J, Zhang Y, Peng H, Yuan C, You M, Sun Q, Wang J, Wang L, Luo M, Han J, Liu Z (2015) High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda 1817 × Beinong 6. PLoS One 10:e0118144CrossRefPubMedPubMedCentralGoogle Scholar
  66. Xu Y, An D, Liu D, Zhang A, Xu H, Li B (2012a) Mapping QTLs with epistatic effects and QTL × treatment interactions for salt tolerance at seedling stage of wheat. Euphytica 186:233–245CrossRefGoogle Scholar
  67. Xu Y, An D, Liu D, Zhang A, Xu H, Li B (2012b) Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crop Res 138:57–62CrossRefGoogle Scholar
  68. Xu Y, Li S, Li L, Zhang X, Xu H, An D (2013) Mapping QTLs for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat. Plant Breed 132:276–283CrossRefGoogle Scholar
  69. Xu Y, Wang R, Tong Y, Zhao H, Xie Q, Liu D, Zhang A, Li B, Xu H, An D (2014) Mapping QTLs for yield and nitrogen-related traits in wheat: influence of nitrogen and phosphorus fertilization on QTL expression. Theor Appl Genet 127:59–72CrossRefPubMedGoogle Scholar
  70. Xu Y, Li S, Li L, Ma F, Fu X, Shi Z, Xu H, Ma P, An D (2017) QTL mapping for yield and photosynthetic related traits under different water regimes in wheat. Mol Breed 37:34CrossRefGoogle Scholar
  71. Yang X, Wu D, Shi J, He Y, Pinot F, Grausem B, Yin C, Zhu L, Chen M, Luo Z, Liang W, Zhang D (2014) Rice CYP703A3, a cytochrome P450 hydroxylase, is essential for development of anther cuticle and pollen exine. J Integr Plant Biol 56:979–994CrossRefPubMedGoogle Scholar
  72. Yao J, Wang L, Liu L, Zhao C, Zheng Y (2009) Association mapping of agronomic traits on chromosome 2A of wheat. Genetica 137:67–75CrossRefPubMedGoogle Scholar
  73. Yue A, Li A, Mao X, Chang X, Li R, Jing R (2015) Identification and development of a functional marker from 6-SFT-A2 associated with grain weight in wheat. Mol Breed 35:63CrossRefPubMedPubMedCentralGoogle Scholar
  74. Zhai H, Feng Z, Li J, Liu X, Xiao S, Ni Z, Sun Q (2016) QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Front Plant Sci 7:1617PubMedPubMedCentralGoogle Scholar
  75. Zhang K, Tian J, Zhao L, Wang S (2008) Mapping QTLs with epistatic effects and QTL × environment interactions for plant height using a doubled haploid population in cultivated wheat. J Genet Genomics 35:119–127CrossRefPubMedGoogle Scholar
  76. Zhang D, Hao C, Wang L, Zhang X (2012) Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Planta 236:1507–1517CrossRefPubMedGoogle Scholar
  77. Zhang C, Zhou Z, Yong H, Zhang X, Hao Z, Zhang F, Li M, Zhang D, Li X, Wang Z, Weng J (2017a) Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theor Appl Genet 130:1011–1029CrossRefPubMedGoogle Scholar
  78. Zhang N, Fan X, Cui F, Zhao C, Zhang W, Zhao X, Yang L, Pan R, Chen M, Han J, Ji J, Liu D, Zhao Z, Tong Y, Zhang A, Wang T, Li J (2017b) Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theor Appl Genet 130:1235–1252CrossRefPubMedGoogle Scholar
  79. Zhao Y, Mette MF, Gowda M, Longin CF, Reif JC (2014) Bridging the gap between marker-assisted and genomic selection of heading time and plant height in hybrid wheat. Heredity 112:638–645CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar
  81. Zhu X, Liang W, Cui X, Chen M, Yin C, Luo Z, Zhu J, Lucas WJ, Wang Z, Zhang D (2015) Brassinosteroids promote development of rice pollen grains and seeds by triggering expression of Carbon Starved Anther, a MYB domain protein. Plant J 82:570–581CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Agricultural Water Resources & Hebei Key Laboratory of Agricultural Water-Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.The Applied Plant Genomics Laboratory of Crop Genomics and Bioinformatics Centre, National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agricultural SciencesNanjing Agricultural UniversityNanjingChina
  4. 4.The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina

Personalised recommendations