Skip to main content
Log in

Genome-wide association mapping of three important traits using bread wheat elite breeding populations

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The exponential development of molecular markers enables a more effective study of the genetic architecture of traits of economic importance, like test weight in wheat (Triticum aestivum L.), for which a high value is desired by most end-users. The association mapping (AM) method now allows more precise exploration of the entire genome. AM requires populations with substantial genetic variability of the traits of interest. The breeding lines at the end of a selection cycle, characterized for numerous traits, represent a potentially useful population for AM studies. Using three elite line populations, selected by several breeders and genotyped with about 2,500 Diversity Arrays Technology markers, several associations were identified between these markers and test weight, grain yield and heading date. To minimize spurious associations, we compared the general linear model and mixed linear model (MLM), which adjust for population structure and kinship differently. The MLM model with the kinship matrix was the most efficient. Finally, elite lines from several breeding programs had sufficient genetic variability to allow for the mapping of several chromosomal regions involved in the variation of three important traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AM:

Association mapping

DH:

Doubled haploid

GLM:

General linear model

GY:

Grain yield

HD:

Heading date

LD:

Linkage disequilibrium

MLM:

Mixed linear model

PCA:

Principal component analysis

QTL:

Quantitative trait locus/loci

RIL:

Recombinant inbred line

TW:

Test weight

References

  • Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409–1420

    Article  CAS  PubMed  Google Scholar 

  • Bednarek (2012) Analyse fonctionnelle de TaGW2, une E3 ligase de type RING, dans le développement du grain de blé tendre (Triticum aestivum). Thèse, Université Blaise Pascal, Clermont-Ferrand II, France

  • Bednarek J, Boulaflous A, Girousse C, Ravel C, Tassy C, Barret P, Fouad Bouzidi M, Mouzeyar S (2012) Down-regulation of the TaGW2 gene by RNA interference results in decreased grain size and weight in wheat. J Exp Bot 16:5945–5955

    Article  Google Scholar 

  • Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T (2012) Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor Appl Genet 125:255–271

    Article  PubMed  Google Scholar 

  • Benson J, Brown-Guedira G, Paul Murphy J, Clay Sneller J (2012) Population structure, linkage disequilibrium, and genetic diversity in soft winter wheat enriched for fusarium head blight resistance. Plant Genome 5:71–80

    Article  CAS  Google Scholar 

  • Bordes J, Ravel C, Le Gouis J, Charmet G, Balfourier F (2011) Use of global wheat core collection for association analysis of flour and dough quality traits. J Cereal Sci 54:137–147

    Article  Google Scholar 

  • Bordes J, Ravel C, Jaubertie JP, Duperrier B, Gardet O, Heumez E, Pissavy AL, Charmet G, Le Gouis J, Balfourier F (2013) Genomic regions associated with the nitrogen limitation response revealed in a global wheat core collection. Theor Appl Genet 126:805–822

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed Central  PubMed  Google Scholar 

  • Brisson N, Gate P, Gouache D, Charmet G, Oury FX, Huard F (2010) Why are wheat yields stagnating in Europe? A comprehensive data analysis for France. Field Crops Res 119:201–212

    Article  Google Scholar 

  • Charmet G, Robert N, Branlard G, Linossier P, Martre P, Triboi E (2005) Genetic analysis of dry matter and nitrogen accumulation and protein composition in wheat kernels. Theor Appl Genet 111:540–550

    Article  CAS  PubMed  Google Scholar 

  • Crossa J, Burgueno J, Dreisickacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plantarum 129:635–643

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Fu YB, Somers DJ (2009) Genome-wide reduction of genetic diversity in wheat breeding. Crop Sci 49:161–168

    Article  Google Scholar 

  • Hao M, Chen J, Zhang L, Luo J, Yuan Z, Yan Z, Zhang B, Chen W, Wei Y, Zhang H, Zheng Y, Liu D (2013) The genetic study utility of a hexaploid wheat DH population with non-recombinant A- and B-genomes. SpringerPlus 2:131. doi:10.1186/2193-1801-2-131

    Article  PubMed Central  PubMed  Google Scholar 

  • Horvath A, Didier A, Koenig J, Exbrayat F, Charmet G, Balfourier F (2009) Diversity and linkage disequilibrium analysis along the chromosome 3B of bread wheat (Triticum aestivum L.) in contrasted plant materials. Theor Appl Genet 119:1523–1537

    Article  CAS  PubMed  Google Scholar 

  • Huang XQ, Cloutier S, Lycar L, Radovanovic N, Humphreys G, Noll JS, Somers DJ, Brown PD (2006) Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet 113:753–766

    Article  CAS  PubMed  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim W, Johnson JW, Baenziger PS, Lukaszewski AJ, Gaines CS (2004) Agronomic effect of wheat–rye translocation carrying rye chromatin (1R) from different sources. Crop Sci 44:1254–1258

    Article  Google Scholar 

  • Knapp SJ, Bridges WC (1990) Using molecular markers to estimate quantitative trait locus parameters: power and genetic variances for unreplicated and replicated progeny. Genetics 126:769–777

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuchel H, Williams K, Langridge P, Eagles HA, Jefferies SP (2007) Genetic dissection of grain yield in bread wheat II. QTL-by environment interaction. Theor Appl Genet 115:1015–1027

    Article  CAS  PubMed  Google Scholar 

  • Le Gouis J, Bordes J, Ravel C, Heumez E, Faure S, Praud S, Galic N, Remoue′ C, Balfourier F, Allard V, Rousset M (2012) Genome wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theor Appl Genet 124:597–611

    Article  PubMed  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells MK, Jannink JL (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Lynch M, Walsh JB (1998) Genetics and analysis of quantitative traits. Sinauer Assocs Inc, Sunderland, MA 980p

    Google Scholar 

  • Mackay L, Powell W (2007) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  CAS  PubMed  Google Scholar 

  • McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames H, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ‘AC domain’. Genome 48:870–883

    Article  CAS  PubMed  Google Scholar 

  • Metakovsky EV, Branlard G, Chernakov VM, Upelniek VP, Redaelli R, Pogna NE (1997) Recombination mapping of some chromosome 1A-, 1B-, 1D-, and 6B-controlled gliadins and low molecular weight glutenin subunits in common wheat. Theor Appl Genet 94:788–795

    Article  CAS  Google Scholar 

  • Mulki MA, Jighly A, Ye G, Emebiri LC, Moody D, Ansari O, Ogbonnaya FC (2013) Association mapping for soilborne pathogen resistance in synthetic hexaploid wheat. Mol Breed 31:299–311

    Article  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Dencie S, Varshney RK, Borner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Plessis A, Ravel C, Bordes J, Balfourier F, Martre P (2013) Association study of wheat grain protein composition reveals that gliadin and glutenin composition are trans-regulated by different chromosome regions. J Exp Bot 64:3627–3644

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Ravel C, Martre P, Romeuf I, Dardevet M, El-Malki R, Bordes J, Duchateau N, Brunel D, Balfourier F, Charmet G (2009) Nucleotide polymorphism in the wheat transcriptional activator Spa influences its pattern of expression and has pleiotropic effects on grain protein composition, dough viscoelasticity and grain hardness. Plant Physiol 151:33–44

    Article  Google Scholar 

  • Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292

    Article  PubMed  Google Scholar 

  • Roy JK, Prasad M, Varshney RK, Balyan HS, Blake TK, Dhaliwal HS, Singh H, Edwards KJ, Gupta PK (1999) Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theor Appl Genet 99:336–340

    Article  Google Scholar 

  • Semagn K, Bjørnstad A, Skinnes H, Marøy AG, Tarkegne Y, William M (2006) Distribution of DArT, AFLP and SSR markers in a genetic linkage map of a double haploid hexaploid wheat population. Genome 49:545–555

    Article  CAS  PubMed  Google Scholar 

  • Somers D, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Google Scholar 

  • Sun XY, Wu K, Zhao Y, Kong FM, Han GZ, Jiang HM, Huang XJ, Li RJ, Wang HG, Li SS (2009) QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica 165:615–624

    Article  CAS  Google Scholar 

  • Sun X, Marza F, Ma H, Carver BF, Bai G (2010) Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theor Appl Genet 120:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Uauy C, Brevis JC, Dubcovsky J (2006) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content. J Exp Bot 57:2785–2794

    Article  CAS  PubMed  Google Scholar 

  • Veyrieras J-B, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC Bioinformatics 8:1–16

    Google Scholar 

  • Weir BS (1996) Genetic data analysis II methods for discrete population genetic data. Sinauer Assocs Inc, Sunderlan, MA

    Google Scholar 

  • Yang Z, Bai Z, Li X, Wang P, Wu Q, Yang L, Li L, Li X (2012) SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theor Appl Genet 125:1057–1068

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Ersoz E, Chao-Qiang L, Todhunter RJ, Tiwari K, Gore A, Bradbury PJ, Yu J, Arnett DA, Ordovas JM, Buckler ES (2010) Adaptation of mixed linear model for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P, Nordborg M (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded by the FSOV (Fonds de Soutien à l’Obtention Végétale) under grant FSOV2008A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Bordes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 306 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bordes, J., Goudemand, E., Duchalais, L. et al. Genome-wide association mapping of three important traits using bread wheat elite breeding populations. Mol Breeding 33, 755–768 (2014). https://doi.org/10.1007/s11032-013-0004-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-0004-0

Keywords

Navigation