Skip to main content

Advertisement

Log in

Recent advances in silicate-based crystalline bioceramics for orthopedic applications: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present article critically reviewed the potentiality of Mg–Ca silicate-based crystalline bioceramics such as MgSiO3, Mg2SiO4, CaSiO3, Ca2SiO4, Ca3SiO5, CaMgSi2O6, Ca2MgSi2O7, Ca7MgSi4O16, CaMgSiO4 and Ca3MgSi2O8 as new generation orthopedic prosthetic implants. Mg2+, Ca2+ and Si4+ ions are abundant in bone and play a crucial role in various bone metabolic activities such as enhancing osteogenesis and inhibiting osteoporosis. The release rate of Mg2+, Ca2+ and Si4+ ions from these bioceramics depends on the crystal structure which consequently, influences their bioactivity and biocompatibility. In addition, the release rate of these ions can be tuned by tailoring the processing parameters/routes and compositional modifications and subsequently, bioactivity, cellular response as well as bone regeneration ability can be improved. Toward this end, the present article thoroughly reviewed and analyzed the influence of crystal structure, processing parameters/routes and compositional alteration on in vitro/in vivo biocompatibility and degradation behavior of the above ceramics. Further, a correlation between structure, processing and properties has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Reproduced with permission from reference [21]. Copyright [2017, American chemical society]

Figure 4

Reproduced with permission from reference [124]. Copyright [2015, Elsevier]

Figure 5

Reproduced with permission from reference [19]. Copyright [2019, Springer Publishing Company]. j Implantation of Zn doped Mg2SiO4 ceramic does not cause any toxic effect to the three major organs (such as heart, kidney and lever) of rabbit model up to 90 days [34, 35]. Reproduced with permission from reference [34]. Copyright [2018, American Chemical Society]. Reproduced with permission from reference [35]. Copyright [2018, American Chemical Society.]

Figure 6

Reproduced with permission from reference [145]. Copyright [2006, Elsevier]

Figure 7

Reproduced with permission from reference [18]. Copyright [2020, John Wiley and Sons]

Figure 8

Reproduced with permission from reference [43]. Copyright [2013, Royal Society of Chemistry]

Figure 9

Reproduced with permission from reference [260]. Copyright [2008, Elsevier]

Figure 10
Figure 11

Reproduced with permission from reference [123]. Copyright [2009, Elsevier]. Histological images representing the neo bone formation area on akermanite (A1, A2) and β-TCP (B1, B2), implanted in calvarial defect area for 8 weeks. (C1), (D1) and (E1) represent the neo bone area, vessel area as well as residual material area of akermanite and β-TCP ceramics. Reproduced with permission from reference [331]. Copyright [2016, Springer Nature]

Figure 12

Similar content being viewed by others

References

  1. Sheikh Z, Najeeb S, Sultan Z, Verma V, Baloch H, Glogauer M (2015) Biodegradable materials for bone repair and tissue engineering applications. Materials 8:5744–5794

    Article  CAS  Google Scholar 

  2. Ratner B, Hoffman A, Schoen FJ, Lemons JE (2004) An introduction to materials in medicine

  3. Chanlalit C, Shukla DR, Fitzsimmons JS, An KN, O’Driscoll SW (2012) Stress shielding around radial head prostheses. J Hand Surg Am 37(10):2118–2125

    Article  Google Scholar 

  4. Hutmacher D, Hürzeler MB, Schliephake H (1996) A review of material properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Int J Oral Maxillofac Implants 11(5):667–678

    CAS  Google Scholar 

  5. Hench LL (2013) Chronology of bioactive glass development and clinical applications

  6. Saini M, Singh Y, Arora P, Arora V, Jain K (2015) Implant biomaterials: a comprehensive review. World J Clin Cases 3:52–57

    Article  Google Scholar 

  7. Liu X, Ma PX (2004) Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng 32(3):477–486

    Article  Google Scholar 

  8. Nabiyouni M, Brückner T, Gbureck U, Bhaduri S (2017) Magnesium-based bioceramics in orthopedic applications. Acta Biomater. https://doi.org/10.1016/j.actbio.2017.11.033

    Article  Google Scholar 

  9. Lutton P, Ben-Nissan B (1997) The status of biomaterials for orthopedic and dental applications: part II -bioceramics in orthopedic and dental applications. Mater Technol 12(3–4):107–111

    Article  Google Scholar 

  10. Saad M, Akhtar S, Srivastava S (2018) Composite Polymer in orthopedic implants: a review. Mater Today Proc 5:20224–20231

    Article  CAS  Google Scholar 

  11. Alexander R, Theodos L (1993) Fracture of the bone-grafted mandible secondary to stress shielding: report of a case and review of the literature. J Oral Maxillofac Surg 51(6):695–697

    Article  CAS  Google Scholar 

  12. Sumner DR (2015) Long-term implant fixation and stress-shielding in total hip replacement. J Biomech 48(5):797–800

    Article  CAS  Google Scholar 

  13. Haase K, Rouhi G (2013) Prediction of stress shielding around an orthopedic screw: using stress and strain energy density as mechanical stimuli. Comput Biol Med 43(11):1748–1757

    Article  Google Scholar 

  14. Christensen FB, Dalstra M, Sejling F, Overgaard S, Bünger C (2000) Titanium-alloy enhances bone-pedicle screw fixation: mechanical and histomorphometrical results of titanium-alloy versus stainless steel. Eur Spine J 9(2):97–103

    Article  CAS  Google Scholar 

  15. Marti C, Imhoff AB, Bahrs C, Romero J (1997) Metallic versus bioabsorbable interference screw for fixation of bone-patellar tendon-bone autograft in arthroscopic anterior cruciate ligament reconstruction. A preliminary report. Knee Surg Sports Traumatol Arthrosc 5(4):217–221

    Article  CAS  Google Scholar 

  16. Eppley BL, Sadove AM (1995) A comparison of resorbable and metallic fixation in healing of calvarial bone grafts. Plast Reconstr Surg 96(2):316–322

    Article  CAS  Google Scholar 

  17. Diba M, Goudouri O-M, Tapia F, Boccaccini A (2014) Magnesium-containing bioactive polycrystalline silicate-based ceramics and glass-ceramics for biomedical applications. Curr Opin Solid State Mater Sci 18:147

    Article  CAS  Google Scholar 

  18. Venkatraman SK, Swamiappan S (2020) Review on calcium- and magnesium-based silicates for bone tissue engineering applications. J Biomed Mater Res A 108(7):1546–1562

    Article  CAS  Google Scholar 

  19. Devi B, Nandi S, Roy M (2019) Magnesium silicate bioceramics for bone regeneration: a review. J Indian Inst Sci 99:261

    Article  Google Scholar 

  20. Chen C, Watkins-Curry P, Smoak M, Hogan K, Deese S, McCandless GT, Chan JY, Hayes DJ (2015) Targeting calcium magnesium silicates for polycaprolactone/ceramic composite scaffolds. ACS Biomater Sci Eng 1(2):94–102

    Article  CAS  Google Scholar 

  21. Sun T-W, Yu W-L, Zhu Y-J, Yang R-L, Shen Y-Q, Chen D-Y, He Y-H, Chen F (2017) Hydroxyapatite nanowire@magnesium silicate core-shell hierarchical nanocomposite: synthesis and application in bone regeneration. ACS Appl Mater Interfaces 9:16435

    Article  CAS  Google Scholar 

  22. Jin X, Chang J, Zhai W, Lin K (2011) Preparation and characterization of clinoenstatite bioceramics. J Am Ceram Soc 94(1):66–70

    Article  CAS  Google Scholar 

  23. Ni S, Chang J (2008) In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium. phosphate bioceramics. J Biomater Appl 24:139–158

    Article  CAS  Google Scholar 

  24. Ni S, Chang J, Chou L, Zhai W (2007) Comparison of osteoblast-like cell response to calcium and tricalcium phosphate ceramics in vitro. J Biomed Mater Res Part B Appl Biomater 80:174–183

    Article  CAS  Google Scholar 

  25. Zadehnajar P, Mirmusavi MH, Soleymani Eil Bakhtiari S, Bakhsheshi-Rad HR, Karbasi S, RamaKrishna S, Berto F (2021) Recent advances on akermanite calcium-silicate ceramic for biomedical applications. Int J Appl Ceram Technol 18(6):1901–1920

    Article  CAS  Google Scholar 

  26. Zadehnajar P, Mirmusavi M, Soleymani Eil Bakhtiari S, Bakhsheshi-Rad H, Karbas S, RamaKrishna S, Berto F (2021) Recent advances on akermanite calcium-silicate ceramic for biomedical applications. Int J Appl Ceram Technol 18:1901

    Article  CAS  Google Scholar 

  27. Pietak A, Mahoney P, Dias G, Staiger M (2008) Bone-like matrix formation on magnesium and magnesium alloys. J Mater Sci Mater Med 19:407–415

    Article  CAS  Google Scholar 

  28. Wu C, Chang J (2013) A review of bioactive silicate ceramics. Biomed Mater 8:032001

    Article  CAS  Google Scholar 

  29. Xia L, Zhang Z, Chen L, Zhang W, Zeng D, Zhang X, Chang J, Jiang X (2011) Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and β-TCP bioceramics. Eur Cells Mater 22:68–82

    Article  CAS  Google Scholar 

  30. Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, Naoki K, Chen G, Chang J (2011) Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 8:341–349

    Article  CAS  Google Scholar 

  31. Nonami T, Tsutsumi S (1999) Study of diopside ceramics for biomaterials. J Mater Sci Mater Med 10(8):475–479

    Article  CAS  Google Scholar 

  32. Zhai W, Lu H, Wu C, Chen L, Lin X, Naoki K, Chen G, Chang J (2013) Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater 9(8):8004–8014

    Article  CAS  Google Scholar 

  33. Hafezi M, Talebi AR, Miresmaeili SM, Sadeghian F, Fesahat F (2013) Histological analysis of bone repair in rat femur via nanostructured merwinite granules. Ceram Int 39(4):4575–4580

    Article  CAS  Google Scholar 

  34. Devi B, Tripathy B, Kumta P, Nandi S, Roy M (2018) In Vivo biocompatibility of zinc doped magnesium silicate bio-ceramics. ACS Biomater Sci Eng 4:2126

    Article  CAS  Google Scholar 

  35. Devi B, Tripathy B, Roy A, Lee B, Kumta P, Nandi S, Roy M (2018) In vitro biodegradation and in vivo biocompatibility of forsterite bio-ceramics: effects of strontium substitution. ACS Biomater Sci Eng 5:530

    Article  CAS  Google Scholar 

  36. Sun M, Liu A, Ma C, Shao H, Yu M, Liu Y, Gou Z, Yan S (2015) Systematical Investigation of β-Dicalcium Silicate-based Bone Cements in vitro and in vivo in Comparison with the Clinically Applied CPC and Bio-Oss®. RSC Adv 6:586

    Article  CAS  Google Scholar 

  37. Bretado L, Cortés D, Ortega W, Renteria D (2009) Effect of magnesium content in simulated body fluid on apatite forming ability of wollastonite ceramics. Adv Appl Ceram 108(3):194–197

    Article  CAS  Google Scholar 

  38. Mirhadi M, Tavangarian F, Emadi R (2011) Synthesis, characterization and formation mechanism of single-phase nanostructure bredigite powder. Mater Sci Eng C 32:133–139

    Article  CAS  Google Scholar 

  39. Wu C, Chang J, Xiao Y (2013) Advanced bioactive inorganic materials for bone regeneration and drug delivery. CRC Press

    Book  Google Scholar 

  40. Devi B, Lee B, Roy A, Kumta P, Roy M (2017) Effect of zinc oxide doping on in vitro degradation of magnesium silicate bioceramics. Mater Lett 207:100

    Article  CAS  Google Scholar 

  41. Bandyopadhyay A, Bernard S, Xue W, Bose S (2006) Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants. J Am Ceram Soc 89:2675–2688

    Article  CAS  Google Scholar 

  42. Sun H, Zhang Q, Yang H, Zou J (2007) (Ca1−xMgx)SiO3: a low-permittivity microwave dielectric ceramic system. Mater Sci Eng, B 138:46–50

    Article  CAS  Google Scholar 

  43. Zhang N, Molenda J, Mankoci S, Zhou X, Murphy W, Sahai N (2013) Crystal structures of CaSiO3 polymorphs control growth and osteogenic differentiation of human mesenchymal stem cells on bioceramic surfaces. Biomater Sci 1:1101

    Article  CAS  Google Scholar 

  44. Bigham A, Saudi A, Rafienia M, Rahmati S, Bakhtiyari H, Salahshouri F, Sattary M, Hassanzadeh-Tabrizi SA (2018) Electrophoretically deposited mesoporous magnesium silicate with ordered nanopores as an antibiotic-loaded coating on surface-modified titanium. Mater Sci Eng C 96:765

    Article  CAS  Google Scholar 

  45. Li J, Song Y, Zhang S, Zhao C, Zhang F, Zhang X, Cao L, Fan Q, Tang T (2010) In vitro responses of human bone marrow stromal cells to a uoridated hydroxyapatite coated biodegradable Mg–Zn alloy. Biomaterials 31:5782–5788

    Article  CAS  Google Scholar 

  46. Feng S, Li J, Jiang X, Li X, Pan Y, Zhao L, Boccaccini AR, Zheng K, Yang L, Wei J (2016) Influences of mesoporous magnesium silicate on the hydrophilicity, degradability, mineralization and primary cell response to a wheat protein based biocomposite. J Mater Chem B 4(39):6428–6436

    Article  CAS  Google Scholar 

  47. Kang Y, Wei J, Shin J, Wu Y, Su J-C, Park Y, Shin J-W (2018) Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds. Int J Nanomed 13:1107–1117

    Article  CAS  Google Scholar 

  48. Khare D, Basu B, Dubey AK (2020) Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials 258:120280

    CAS  Google Scholar 

  49. Wu Z, Tang T, Guo H, Tang S, Niu Y, Zhang J, Zhang W, Ma R, Su J-C, Liu C, Wei J (2014) In vitro degradability, bioactivity and cell responses to mesoporous magnesium silicate for the induction of bone regeneration. Colloids Surf B Biointerfaces 120C:38–46

    Article  CAS  Google Scholar 

  50. Wilkins MR, Sanchez J-C, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13(1):19–50

    Article  CAS  Google Scholar 

  51. Deng F, Zhai W, Yin Y, Peng C, Ning C (2021) Advanced protein adsorption properties of a novel silicate-based bioceramic: a proteomic analysis. Bioactive Mater 6(1):208–218

    Article  CAS  Google Scholar 

  52. Othman Z, Cillero Pastor B, van Rijt S, Habibovic P (2018) Understanding interactions between biomaterials and biological systems using proteomics. Biomaterials 167:191–204

    Article  CAS  Google Scholar 

  53. Wang J, Chen Y, Zhu X, Yuan T, Tan Y, Fan Y, Zhang X (2014) Effect of phase composition on protein adsorption and osteoinduction of porous calcium phosphate ceramics in mice. J Biomed Mater Res, Part A 102(12):4234–4243

    Google Scholar 

  54. Maehira F, Miyagi I, Eguchi Y (2009) Effects of calcium sources and soluble silicate on bone metabolism and the related gene expression in mice. Nutrition 25(5):581–589

    Article  CAS  Google Scholar 

  55. Dufrane D, Delloye C, Mckay I, De Aza P, De Aza S, Schneider Y-J, Anseau M (2003) Indirect cytotoxicity evaluation of pseudowollastonite. J Mater Sci Mater Med 14(1):33–38

    Article  CAS  Google Scholar 

  56. Macphee DE, Lachowski EE (2003) Cement components and their phase, Lea’s chemistry of cement and concrete 95

  57. Oates T (2000) Lime and limestone, Kirk‐Othmer encyclopedia of chemical technology

  58. Sun M, Liu A, Shao H, Yang X, Ma C, Yan S, Liu Y, Gou Z (2016) Systematical evaluation of mechanically strong 3D printed diluted magnesium doping wollastonite scaffolds on osteogenic capacity in rabbit calvarial defects. Sci Rep 6:34029

    Article  CAS  Google Scholar 

  59. Shen T, Dai Y, Li X, Xu S, Gou Z, Gao C (2017) Regeneration of the osteochondral defect by a wollastonite and macroporous fibrin biphasic scaffold. ACS Biomater Sci Eng 4:1942

    Article  CAS  Google Scholar 

  60. Huang Y, Wu C, Zhang X, Chang J, Dai K (2017) Regulation of immune response by bioactive ions released from silicate bioceramics for bone regeneration. Acta Biomater 66:81

    Article  CAS  Google Scholar 

  61. Zhang W, Feng C, Yang G, Li G, Ding X, Wang S, Dou Y, Zhang Z, Chang J, Wu C, Jiang X (2017) 3D-printed scaffolds with synergistic effect of hollow-pipe structure and bioactive ions for vascularized bone regeneration. Biomaterials 135:85

    Article  CAS  Google Scholar 

  62. Uetsuji Y, Fujimoto S, Tsuchiya K, Hirano Y (2009) Cytotoxicity of piezoelectric materials in colony formation assay. J Soc Mater Sci Jpn 58:943–947

    Article  CAS  Google Scholar 

  63. Schwarz K (1973) A bound form of silicon in glycosaminoglycans and polyuronides. Proc Natl Acad Sci USA 70:1608–1612

    Article  CAS  Google Scholar 

  64. Zhou H, Luchini T, Bhaduri S, Deng L (2015) Silicon (Si) containing bone cements: a review. Mater Technol 30:229–236

    Article  Google Scholar 

  65. Zhou X, Zhang N, Mankoci S, Sahai N (2017) Silicates in orthopedics and bone tissue engineering materials. J Biomed Mater Res Part A 105(7):2090–2102

    Article  CAS  Google Scholar 

  66. Lai W, Garino J, Flaitz C, Ducheyne P (2005) Excretion of resorption products from bioactive glass implanted in rabbit muscle. J Biomed Mater Res Part A Offi J Soc Biomater Jpn Soc Biomater Aust Soc Biomater Korean Soc Biomater 75(2):398–407

    Google Scholar 

  67. Dobbie J, Smith MJ (1982) The silicon content of body fluids. Scott Med J 27(1):17–19

    Article  CAS  Google Scholar 

  68. Lin K, Liu Y, Huang H, Chen L, Wang Z, Chang J (2015) Degradation and silicon excretion of the calcium silicate bioactive ceramics during bone regeneration using rabbit femur defect model. J Mater Sci Mater Med 26(6):1–8

    Article  CAS  Google Scholar 

  69. Munjas Jurkic L, Cepanec I, Pavelić S, Pavelić K (2013) Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy. Nutr Metab 10:2

    Article  CAS  Google Scholar 

  70. Reffitt D, Ogston N, Jugdaohsingh R, Cheung H, Evans B, Thompson R, Powell J, Hampson G (2003) Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32:127–135

    Article  CAS  Google Scholar 

  71. Carlisle EM (1981) Silicon: a requirement in bone formation independent of vitamin D1. Calcif Tissue Int 33(1):27–34

    Article  CAS  Google Scholar 

  72. Bose S, Tarafder S, Banerjee SS, Davies NM, Bandyopadhyay A (2011) Understanding in vivo response and mechanical property variation in MgO, SrO and SiO2 doped β-TCP. Bone 48(6):1282–1290

    Article  CAS  Google Scholar 

  73. Zou S, Ireland D, Brooks R, Rushton N, Best S (2008) the effects of silicate ions on human osteoblast adhesion, proliferation, and differentiation. J Biomed Mater Res Part B Appl Biomater 90:123–130

    Article  CAS  Google Scholar 

  74. Balamurugan A, Rebelo A, Lemos AF, Rocha J, Ventura JM, Ferreira J (2008) Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response. Dent Mater Off Pub Acad Dent Mater 24:1374–1380

    CAS  Google Scholar 

  75. Schwarz K, Milne DB (1972) Growth-promoting effects of silicon in rats. Nature 239(5371):333–334

    Article  CAS  Google Scholar 

  76. Carlisle EM (1972) Silicon: an essential element for the chick. Science 178(4061):619–621

    Article  CAS  Google Scholar 

  77. Szurkowska K, Kolmas J (2017) Hydroxyapatites enriched in silicon – bioceramic materials for biomedical and pharmaceutical applications. Prog Nat Sci Mater Int 27:401

    Article  CAS  Google Scholar 

  78. Palakurthy S, Azeem A, Reddy K, Penugurti V, Manavathi B (2019) A Comparative study on in vitro behaviour of calcium silicate ceramics synthesised from bio‐waste resources. J Am Ceram Soc

  79. Dörfler A, Detsch R, Romeis S, Schmidt J, Eisermann C, Peukert W, Boccaccini AR (2014) Biocompatibility of submicron bioglass® powders obtained by a top-down approach. J Biomed Mater Res B Appl Biomater 102(5):952–961

    Article  CAS  Google Scholar 

  80. Arora M, Arora E (2017) The promise of silicon: bone regeneration and increased bone density. J Arthrosc Joint Surg 4(3):103–105

    Article  Google Scholar 

  81. Agotegaray M (2020) Silicon: the importance on human being and the role on bone physiology, silica-based nanotechnology for bone disease treatment. Springer, pp 39–44

    Google Scholar 

  82. Mohammadi H, Hafezi M, Nezafati N, Heasarki S, Nadernezhad A, Ghazanfari S, Sepantafar M (2014) Bioinorganics in bioactive calcium silicate ceramics for bone tissue repair: bioactivity and biological properties. J Ceram Sci Technol 5:1–12

    Google Scholar 

  83. Piste P, Sayaji D, Avinash M (2012) Calcium and its role in human body. Int J Res Pharm Biomed Sci 4:2229–3701

    Google Scholar 

  84. Wu C, Chang J, Wang J, Ni S, Zhai W (2005) Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramic. Biomaterials 26:2925–2931

    Article  CAS  Google Scholar 

  85. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855

    Article  CAS  Google Scholar 

  86. Riddle RC, Taylor AF, Genetos DC, Donahue HJ (2006) MAP kinase and calcium signaling mediate fluid flow-induced human mesenchymal stem cell proliferation. Am J Physiol Cell Physiol 290(3):C776–C784

    Article  CAS  Google Scholar 

  87. O’Neill E, Awale G, Daneshmandi L, Umerah O, Lo KWH (2018) The roles of ions on bone regeneration. Drug Discov Today 23(4):879–890. https://doi.org/10.1016/j.drudis.2018.01.049

    Article  CAS  Google Scholar 

  88. O’Flaherty E (1992) Modeling bone mineral metabolism, with special reference to calcium and lead. Neurotoxicology 13(4):789–797

    CAS  Google Scholar 

  89. Volpe S (2013) Magnesium in disease prevention and overall health. Adv Nutr 4(3):378S-383S. https://doi.org/10.3945/an.112.003483

    Article  CAS  Google Scholar 

  90. Walker J, Shadanbaz S, Woodfield TB, Staiger MP, Dias GJ (2014) Magnesium biomaterials for orthopedic application: a review from a biological perspective. J Biomed Mater Res B Appl Biomater 102(6):1316–1331

    Article  CAS  Google Scholar 

  91. Sezer N, Evis Z, Kayhan SM, Tahmasebifar A, Koç M (2018) Review of magnesium-based biomaterials and their applications. J Magnes Alloys 6:23

    Article  CAS  Google Scholar 

  92. Wang J, Ma X-Y, Feng Y-F, Ma Z-S, Ma T-C, Zhang Y, Li X, Wang L, Lei W (2017) Magnesium ions promote the biological behaviour of rat calvarial osteoblasts by activating the PI3K/Akt signalling pathway. Biol Trace Elem Res 179(2):284–293

    Article  CAS  Google Scholar 

  93. Bosch-Rué E, Diez-Tercero L, Giordano-Kelhoffer B, Delgado LM, Bosch BM, Hoyos-Nogués M, Mateos-Timoneda MA, Tran PA, Gil FJ, Perez RA (2021) Biological roles and delivery strategies for ions to promote osteogenic induction. Front Cell Dev Biol 8:614545

    Article  Google Scholar 

  94. Smyth JR (1974) Experimental study on the polymorphism of enstatite. Am Mineral J Earth Planet Mater 59(3–4):345–352

    CAS  Google Scholar 

  95. Mielcarek W, Nowak-Woźny D, Prociów K (2004) Correlation between MgSiO3 phases and mechanical durability of steatite ceramics. J Eur Ceram Soc 24(15–16):3817–3821

    Article  CAS  Google Scholar 

  96. Song ME, Kim JS, Joung MR, Nahm S, Kim YS, Paik JH, Choi BH (2008) Synthesis and microwave dielectric properties of MgSiO3 ceramics. J Am Ceram Soc 91(8):2747–2750

    Article  CAS  Google Scholar 

  97. M. Kanzaki, X. Xue, Protoenstatite in MgSiO3 samples prepared by conventional solid state reaction, Journal of Mineralogical and Petrological Sciences (2017) 170616.

  98. Sadanaga R, Okamura FP, Takeda H (1969) X-Ray study of the phase transformations of enstatite. Mineral J 6(1–2):110–130

    Article  CAS  Google Scholar 

  99. Kushiro I (1972) Determination of liquidus relations in synthetic silicate systems with electron probe analysis: the system forsterite-diopside-silica at 1 atmosphere. Am Mineral J Earth Planet Mater 57(7–8):1260–1271

    CAS  Google Scholar 

  100. Smith JV (1959) The crystal structure of proto-enstatite, MgSiO3. Acta Crystallogr A 12(7):515–519

    Article  CAS  Google Scholar 

  101. Hawthorne FC, Ito J (1978) Refinement of the crystal structures of (Mg0.776CO0.224)SiO3 and (Mg0.925Mn0.075)SiO3. Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 34(3):891–893. https://doi.org/10.1107/S0567740878004252

    Article  Google Scholar 

  102. Vitos L, Magyari-Kope B, Ahuja R, Kollár J, Grimvall G, Johansson B (2006) Phase transformations between garnet and perovskite phases in the Earth’s mantle: a theoretical study. Phys Earth Planet Inter 156:108–116

    Article  CAS  Google Scholar 

  103. Jung D, Schmidt M (2011) Solid solution behaviour of CaSiO3 and MgSiO3 perovskites. Phys Chem Miner 38:311–319

    Article  CAS  Google Scholar 

  104. Ullah A, Liu H, Hao H, Iqbal J, Yao Z, Cao M, Xu Q (2016) Phase and microstructure evaluation and microwave dielectric properties of Mg1−xNixSiO3 ceramics. J Electron Mater 45(10):5133–5139

    Article  CAS  Google Scholar 

  105. Ullah A, Liu H, Zhai P, Hao H, Iqbal J, Cao M, Yao Z, Ahmad S, Manan A (2019) Influence of Co substitution on the phase, microstructure, and microwave dielectric properties of MgSiO3 ceramics. J Mater Sci Mater Electron 30:6469

    Article  CAS  Google Scholar 

  106. Ullah A, Liu H, Hao H, Iqbal J, Yao Z, Cao M, Xu Q (2017) Effect of Zn substitution on the sintering temperature and microwave dielectric properties of MgSiO3-based ceramics. Ceram Int 43(1):484–490

    Article  CAS  Google Scholar 

  107. Stephenson D, Sclar C, Smith J (1966) Unit cell volumes of synthetic orthoenstatite and low clinoenstatite. Mineral Mag J Mineral Soc 35(274):838–846

    Article  CAS  Google Scholar 

  108. Smith J (1969) Magnesium pyroxenes at high temperature: inversion in clinoenstatite. Nature 222(5190):256–257

    Article  CAS  Google Scholar 

  109. Edrees SJ, Shukur MM, Obeid MM (2018) First-principle analysis of the structural, mechanical, optical and electronic properties of wollastonite monoclinic polymorph. Comput Condens Matter 14:20–26

    Article  Google Scholar 

  110. Felix JT (1968) The crystal structure of parawollastonite. Zeitschrift für Kristallographie Cryst Mater 127(1–4):291–308

    Google Scholar 

  111. Yang H, Prewitt CT (1999) On the crystal structure of pseudowollastonite (CaSiO3). Am Miner 84(5–6):929–932

    Article  CAS  Google Scholar 

  112. Warren Β (1930) The Structure of Melilite (Ca, Na)2 (Mg, Al)1 (Si, Αl)2O7. Zeitschrift für Kristallographie Cryst Mater 74(1–6):131–138

    Article  CAS  Google Scholar 

  113. Cameron M, Papike J (1981) Structural and chemical variations in pyroxenes. Am Miner 66(1–2):1–50

    CAS  Google Scholar 

  114. Pilati T, Demartin F, Gramaccioli C (1995) Thermal parameters for minerals of the olivine group: their implication on vibrational spectra, thermodynamic functions and transferable force fields. Acta Crystallogr B 51(5):721–733

    Article  Google Scholar 

  115. Moore PB, Araki T (1972) Atomic arrangement of merwinite, Ca3Mg [SiO4]2, an unusual dense-packed structure of geophysical interest. Am Mineral J Earth Planet Mater 57(9–10):1355–1374

    CAS  Google Scholar 

  116. Huang C, Kuo D, Kim Y (1994) Phase Stability of chemically derived enstatite (MgSiO3) powders. J Am Ceram Soc 77:2625–2631

    Article  CAS  Google Scholar 

  117. Song M-E, Kim J-S, Joung M-R, Nahm S, Kim Y-S, Paik J-H, Choi B-H (2008) Synthesis and microwave dielectric properties of MgSiO3 ceramics. J Am Ceram Soc 91:2747–2750

    Article  CAS  Google Scholar 

  118. Lee W, Heuer AH (1987) On the polymorphism of enstatite. J Am Ceram Soc 70(5):349–360

    Article  CAS  Google Scholar 

  119. Atlas L (1952) The polymorphism of MgSiO3 and solid-state equilibria in the system MgSiO3-CaMgSi2O6. J Geol 60:125–147

    Article  CAS  Google Scholar 

  120. Sarver JF, Hummel FA (1962) Stability relations of magnesium metasilicate polymorphs. J Am Ceram Soc 45(4):152–156

    Article  CAS  Google Scholar 

  121. Lin L, Yin M, Chaoshu S, Weiping Z, Baogui Y (2006) Synthesis and luminescence properties of red phosphors: Mn2+ doped MgSiO3 and Mg2SiO4 prepared by sol-gel method. J Rare Earths 24:104–107

    Article  Google Scholar 

  122. Hartwig A (2001) Role of magnesium in genomic stability. Mutat Res 475:113–121

    Article  CAS  Google Scholar 

  123. Huang Y, Jin X, Zhang X, Sun H, Tu J, Tang T, Chang J, Dai K (2009) In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials 30:5041–5048

    Article  CAS  Google Scholar 

  124. Wu C, Chen Z, Wu Q, Yi D, Friis T, Zheng X, Chang J, Jiang X, Xiao Y (2015) Clinoenstatite coatings have high bonding strength, bioactive ion release, and osteoimmunomodulatory effects that enhance in vivo osseointegration. Biomaterials 71:35–47

    Article  CAS  Google Scholar 

  125. He D, Dong W, Tang S, Wei J, Liu Z, Gu X, Li M, Guo H, Niu Y (2014) Tissue engineering scaffolds of mesoporous magnesium silicate and poly(ε-caprolactone)–poly(ethylene glycol)–poly(ε-caprolactone) composite. J Mater Sci Mater Med 25:1415

    Article  CAS  Google Scholar 

  126. Wu Z, Zheng K, Zhang J, Tang T, Guo H, Boccaccini A, Wei J (2016) Effects of magnesium silicate on mechanical property, biocompatibility, bioactivity, degradability, osteogenesis of poly(butylene succinate) based composite scaffolds for bone repair. J Mater Chem B 4:7974

    Article  CAS  Google Scholar 

  127. Niu Y, Dong W, Guo H, Deng Y, Guo L, An X, He D, Wei J, Li M (2014) Mesoporous magnesium silicate-incorporated poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) bioactive composite beneficial to osteoblast behaviors. Int J Nanomed 9(Suppl 1):2665–2675

    Article  Google Scholar 

  128. Hsu F-Y, Weng R-C, Lin H-M, Lin Y-H, Lu M-R, Yu J-L, Hsu H-W (2015) A biomimetic extracellular matrix composed of mesoporous bioactive glass as a bone graft material. Microporous Mesoporous Mater 212:56

    Article  CAS  Google Scholar 

  129. Tavangarian F, Emadi R (2011) Improving degradation rate and apatite formation ability of nanostructure forsterite. Ceram Int 37:2275–2280

    Article  CAS  Google Scholar 

  130. Tavangarian F, Emadi R (2010) Nanostructure effects on the bioactivity of forsterite bioceramic. Mater Lett 65:740–743

    Article  CAS  Google Scholar 

  131. Fathi M (2010) Improvement of mechanical properties and biocompatibility of forsterite bioceramic addressed to bone tissue engineering materials. J Mech Behav Biomed Mater 3:530–537

    Article  Google Scholar 

  132. Rude RK, Gruber H, Wei LY, Frausto A, Mills BG (2003) Magnesium deficiency: effect on bone and mineral metabolism in the mouse. Calcif Tissue Int 72:32–41

    Article  CAS  Google Scholar 

  133. Rude RK, Gruber H, Norton HJ, Wei LY, Frausto A, Kilburn J (2006) Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporos Int 17:1022–1032

    Article  CAS  Google Scholar 

  134. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774

    Article  CAS  Google Scholar 

  135. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Article  CAS  Google Scholar 

  136. Wuisman PI, Smit TH (2006) Bioresorbable polymers: heading for a new generation of spinal cages. Eur Spine J 15(2):133–148

    Article  CAS  Google Scholar 

  137. Liu X, Morra M, Carpi A, Li B (2008) Bioactive calcium silicate ceramics and coatings. Biomed Pharmacother 62(8):526–529

    Article  CAS  Google Scholar 

  138. Azarov G, Maiorova E, Oborina M, Belyakov A (1995) Wollastonite raw materials and their applications (a review). Glass Ceram 52(9):237–240

    Article  Google Scholar 

  139. Yagi T, Kusanagi S, Tsuchida Y, Fukai Y (1989) Isothermal compression and stability of perovskite-type CaSiO3. Proc Japan Acad Ser B 65(6):129–132

    Article  CAS  Google Scholar 

  140. Magyari-Köpe B, Vitos L, Grimvall G, Johansson B, Kollar J (2002) Low-temperature crystal structure of CaSiO3 perovskite: an ab initio total energy study. Phys Rev B 65(19):193107

    Article  CAS  Google Scholar 

  141. Yamanaka T, Mori H (1981) The structure and polytypes of α-CaSiO3 (pseudowollastonite). Acta Crystallogr Sect B Struct Crystallogr Cryst Chem 37(5):1010–1017

    Article  Google Scholar 

  142. Karki BB, Crain J (1998) First-principles determination of elastic properties of CaSiO3 perovskite at lower mantle pressures. Geophys Res Lett 25(14):2741–2744

    Article  CAS  Google Scholar 

  143. Stixrude L, Cohen RE, Yu R, Krakauer H (1996) Prediction of phase transition in CaSiO3 perovskite and implications for lower mantle structure. Am Miner 81(9–10):1293–1296

    CAS  Google Scholar 

  144. Akber-Knutson S, Bukowinski MS, Matas J (2002) On the structure and compressibility of CaSiO3 perovskite. Geophys Res Lett 29(3):4–1

    Article  Google Scholar 

  145. Henriques J, Caetano E, Freire V, Da Costa J, Albuquerque E (2006) Structural and electronic properties of CaSiO3 triclinic. Chem Phys Lett 427(1–3):113–116

    Article  CAS  Google Scholar 

  146. Dörsam G, Liebscher A, Wunder B, Franz G, Gottschalk M (2009) Crystal structure refinement of synthetic Ca0.43Sr0.57 [SiO3]-walstromite and walstromite–fluid Ca–Sr distribution at upper-mantle conditions. Eur J Mineral 21(4):705–714

    Article  CAS  Google Scholar 

  147. Kagomiya I, Suzuki I, Ohsato H (2009) Microwave dielectric properties of (Ca1-xSrx) SiO3 ring silicate solid solutions. Jpn J Appl Phys 48(9S1):09KE02

    Google Scholar 

  148. Hayashi S, Okada K, Otsuka N (1991) Preparation of CaSiO3 powders by coprecipitation method and their sinterability. J Ceram Soc Jpn 99(1156):1224–1227

    Article  CAS  Google Scholar 

  149. Siriphannon P, Hayashi S, Yasumori A, Okada K (1999) Preparation and sintering of CaSiO3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution. J Mater Res 14(2):529–536

    Article  CAS  Google Scholar 

  150. Siriphannon P, Kameshima Y, Yasumori A, Okada K, Hayashi S (2002) Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. Eur Ceram Soc 22:511–520

    Article  CAS  Google Scholar 

  151. Iimori Y, Kameshima Y, Okada K, Hayashi S (2005) Comparative study of apatite formation on CaSiO3 ceramics in simulated body fluids with different carbonate concentrations. J Mater Sci Mater Med 16:73–79

    Article  CAS  Google Scholar 

  152. Morsy R, Abuelkhair R, Elnimr T (2016) Synthesis and in vitro bioactivity mechanism of synthetic α-wollastonite and β-wollastonite bioceramics. J Ceram Sci Technol 7(1):65–70

    Google Scholar 

  153. Day S, Thompson S, Evans A, Parker J, Connor L, Tang C (2013) Thermal processing and crystallization of amorphous Mg-Ca silicates. Meteorit Planet Sci 48:1459–1471

    Article  CAS  Google Scholar 

  154. Meiszterics A, Sinkó K (2008) Sol–gel derived calcium silicate ceramics. Colloids Surf A 319(1–3):143–148

    Article  CAS  Google Scholar 

  155. Wang H, Zhang Q, Yang H, Sun H (2008) Synthesis and microwave dielectric properties of CaSiO3 nano powder by the sol-gel process. Ceram Int 34:1405–1408

    Article  CAS  Google Scholar 

  156. Ahn S, Seo D, Lee JK (2015) Fabrication of dense β-wollastonite bioceramics by MgSiO3 addition. J Ceram Process Res 16:548–554

    Google Scholar 

  157. Lin K, Zhai W, Ni S, Chang J, Zeng Y, Qian W (2005) Study of the mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceram Int 31:323–326

    Article  CAS  Google Scholar 

  158. Pei L, Yang L, Yang Y, Fan C, Yin W, Chen J, Zhang Q (2010) A green and facile route to synthesize calcium silicate nanowires. Mater Charact 61(11):1281–1285

    Article  CAS  Google Scholar 

  159. Mei P, Jiang S, Mao L, Zhou Y, Gu K, Zhang C, Wang X, Lin K, Zhao C, Zhu M (2022) In situ construction of flower-like nanostructured calcium silicate bioceramics for enhancing bone regeneration mediated via FAK/p38 signaling pathway. J Nanobiotechnol 20(1):1–17

    Article  Google Scholar 

  160. Singh SP, Karmakar B (2011) Mechanochemical synthesis of nano calcium silicate particles at room temperature. N J Glass Ceram 1(2):49–52

    Article  CAS  Google Scholar 

  161. Rashid R, Shamsudin R, Abdul Hamid MA, Jalar A (2014) Low temperature production of wollastonite from limestone and silica sand through solid-state reaction. J Asian Ceram Soc 2:77

    Article  Google Scholar 

  162. Harabi A, Chehlatt S (2013) Preparation process of a highly resistant wollastonite bioceramics using local raw materials: effect of B2O3 additions on sintering and mechanical properties. J Therm Anal Calorim 111:203

    Article  CAS  Google Scholar 

  163. Kozawa T, Onda A, Yanagisawa K (2009) Accelerated formation of β-dicalcium silicate by solid-state reaction in water vapor atmosphere. Chem Lett 38(5):476–477

    Article  CAS  Google Scholar 

  164. Kozawa T, Yanagisawa K, Yoshida A, Onda A, Suzuki Y (2013) Preparation of β-CaSiO3 powder by water vapor-assisted solid-state reaction. J Ceram Soc Jpn 121:103–105

    Article  CAS  Google Scholar 

  165. Roy R (1987) Ceramics by the solution-sol-gel route. Science 238(4834):1664–1669

    Article  CAS  Google Scholar 

  166. Fang Q, Cheng H, Huang K, Wang J, Li R, Jiao Y (2005) Doping effect on crystal structure and magnetic properties of chromium-substituted strontium hexaferrite nanoparticles. J Magn Magn Mater 294:281–286

    Article  CAS  Google Scholar 

  167. Lakshmi R, Velmurugan V, Sasikumar S (2013) Preparation and phase evolution of wollastonite by sol-gel combustion method using sucrose as the fuel. Combust Sci Technol 185(12):1777–1785

    Article  CAS  Google Scholar 

  168. Huang X-H, Chang J (2009) Synthesis of nanocrystalline wollastonite powders by citrate–nitrate gel combustion method. Mater Chem Phys 115(1):1–4

    Article  CAS  Google Scholar 

  169. Chakradhar R, Chandrappa G, Ramesh K, Rao J (2006) Solution combustion derived nanocrystalline macroporous wollastonite ceramics. Mater Chem Phys 95:169–175

    Article  CAS  Google Scholar 

  170. Kanzaki M, Stebbins JF, Xue X (1991) Characterization of quenched high pressure phases in CaSiO3 system by XRD and 29Si NMR. Geophys Res Lett 18(3):463–466

    Article  CAS  Google Scholar 

  171. Yun Y-H, Yun S-D, Park H-R, Lee Y-K, Youn Y-N (2002) Preparation of β-wollastonite glass-ceramics. J Mater Synth Process 10(4):205–209

    Article  CAS  Google Scholar 

  172. Lin K, Chang J, Zeng Y, Qian W (2004) Preparation of macroporous calcium silicate ceramics. Mater Lett 58(15):2109–2113

    Article  CAS  Google Scholar 

  173. Zhao X, Wang M, Zhang Q, Yang H (2014) Low-temperature sintering and microwave dielectric properties of (Ca09Mg01)SiO3 ceramic with Li2CO3 aAddition. Key Eng Mater 602–603:748–751

    Article  CAS  Google Scholar 

  174. Dhoble SJ, Dhoble N, Pode R (2003) Preparation and characterization of EU3+ activated CaSiO3, (CaA)SiO3 [A = Ba or Sr] phosphors. Bull Mater Sci 26:377–382

    Article  CAS  Google Scholar 

  175. Reddy M, Pathak M (2017) Sol-gel combustion synthesis of Ag doped CaSiO3: in vitro bioactivity, antibacterial activity and cytocompatibility studies for biomedical applications. Mater Technol 33:1–10

    Google Scholar 

  176. Wei F, Jia Q (2015) Synthesis and characteristics of Al2O3-doped α-CaSiO3 ceramics. Ferroelectrics 474(1):120–127

    Article  CAS  Google Scholar 

  177. Wu CT, Zreiqat H (2007) Preparation and characteristics of strontium containing bioactive CaSiO3 ceramics. Trans Tech Publ, pp 499–502

    Google Scholar 

  178. Kong N, Lin K, Li H, Chang J (2014) Synergy effects of copper and silicon ions on stimulation of vascularization by copper-doped calcium silicate. J Mater Chem B 2(8):1100–1110

    Article  CAS  Google Scholar 

  179. Wu C, Ramaswamy Y, Kwik D, Zreiqat H (2007) The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials 28:3171–3181

    Article  CAS  Google Scholar 

  180. Chen T-Y, Chu S-Y, Juang Y (2003) Effects of sintering temperature on the dielectric and piezoelectric properties of Sr additive Sm-modified PbTiO. Sens Actuators A 102:6–10

    Article  Google Scholar 

  181. Li J, Liao H, Hermansson L (1996) Sintering of partially-stabilized zireonia and partially-stabilized zirconia-hydroxyapatie composites by hot isostatic pressing and pressureless sintering. Biomaterials 17:1787–1790

    Article  CAS  Google Scholar 

  182. Lin K, Chang J, Shen R (2009) The effect of powder properties on sintering, microstructure, mechanical strength and degradability of β-tricalcium phosphate/calcium silicate composite bioceramics. Biomed Mater 4(6):065009

    Article  CAS  Google Scholar 

  183. Lin K, Zhang M, Zhai W, Qu H, Chang J (2011) Fabrication and characterization of hydroxyapatite/wollastonite composite bioceramics with controllable properties for hard tissue repair. J Am Ceram Soc 94(1):99–105

    Article  CAS  Google Scholar 

  184. Lin K, Chang J, Lu J (2006) Synthesis of wollastonite nanowires via hydrothermal microemulsion methods. Mater Lett 60(24):3007–3010

    Article  CAS  Google Scholar 

  185. Lin K, Chang J, Chen G, Ruan M, Ning C (2007) A simple method to synthesize single-crystalline β-wollastonite nanowires. J Cryst Growth 300(2):267–271

    Article  CAS  Google Scholar 

  186. Siriphannon P, Hayashi S, Yasumori A, Okada K (2011) Preparation and sintering of CaSiO3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution. J Mater Res 14(2):529–536

    Article  Google Scholar 

  187. Hazar Yoruç A (2007) Preparation and in vitro bioactivity of CaSiO3 powders. Ceram Int 33:687–692

    Article  CAS  Google Scholar 

  188. Jagadale PN, Kulal SR, Joshi MG, Jagtap PP, Khetre SM, Bamane SR (2013) Synthesis and characterization of nanostructured CaSiO3 biomaterial. Mater Sci-Poland 31(2):269–275. https://doi.org/10.2478/s13536-012-0099-8

    Article  CAS  Google Scholar 

  189. Wan X, Hu A, Li M, Chang C, Mao D (2008) Performances of CaSiO3 ceramic sintered by Spark plasma sintering. Mater Charact 59(3):256–260

    Article  CAS  Google Scholar 

  190. Huan-Ping W, Qi-Long Z, Hui Y, Hui-Ping S (2007) Synthesis and microwave dielectric properties of (Ca1-xMgx) SiO3 ceramic by sol-gel process. Acta Phys Chim Sin 23(4):609–613

    Article  Google Scholar 

  191. Kumar M, Bhushana N, SuriyaMurthy N, Sharma SC, Shivakumara C, Krishna RH (2014) Synthesis, characterization and spectroscopic investigation of Cr3+ doped wollastonite nanophosphor. Spectrochim Acta Part A Mol Biomol Spectrosc 128:403–407

    Article  CAS  Google Scholar 

  192. Long LH, Chen LD, Bai S, Chang J, Lin KL (2006) Preparation of Dense beta-CaSiO3 ceramic with high mechanical strength and HAp formation ability in simulated body fluid. J Eur Ceram Soc 26:1701–1706

    Article  CAS  Google Scholar 

  193. De Aza P, Guitián F, Aza S (1994) Bioactivity of wollastonite ceramics: in vitro evaluation. Scr Metall Mater 31:1001–1005

    Article  Google Scholar 

  194. Zhang N, Molenda J, Fournelle J, Murphy W, Sahai N (2010) Effects of pseudowollastonite (CaSiO3) bioceramic on in vitro activity of human mesenchymal stem cells. Biomaterials 31:7653–7665

    Article  CAS  Google Scholar 

  195. Magallanes M, Aza AH, Mateus AY, Teixeira S, Monteiro F, Aza S, Peña P (2009) In vitro study of the proliferation and growth of human bone marrow cells on apatite-wollastonite-2M glass ceramics. Acta Biomater 6:2254–2263

    Article  CAS  Google Scholar 

  196. Palakurthy S, Venu Gopal Reddy K, Samudrala RK, Abdul AP (2019) In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mater Sci Eng C 98:109–117. https://doi.org/10.1016/j.msec.2018.12.101

    Article  CAS  Google Scholar 

  197. Ni S, Chang J, Chou L (2006) A Novel Bioactive Porous CaSiO3 Scaffold for Bone Tissue Engineering. J Biomed Mater Res, Part A 76:196–205

    Article  CAS  Google Scholar 

  198. Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915

    Article  CAS  Google Scholar 

  199. Liu X, Ding C, Chu P (2004) Mechanism of Apatite formation on wollastonite coatings in simulated body fluids. Biomaterials 25:1755–1761

    Article  CAS  Google Scholar 

  200. Keeting P, Oursler M, Wiegand K, Bonde S, Spelsberg T, Riggs B (2009) Zeolite a increases proliferation, differentiation, and transforming growth factor beta production in normal adult human osteoblast-like cells in vitro. J Bone Mineral Res Off J Am Soc Bone Mineral Res 7:1281–1289

    Article  Google Scholar 

  201. Sun H, He S, Wu P, Gao C, Feng P, Xiao T, Deng Y, Shuai C (2016) A novel MgO-CaO-SiO2 system for fabricating bone scaffolds with improved overall performance. Materials 9:287

    Article  CAS  Google Scholar 

  202. Choudhary R, Venkatraman SK, Bulygina I, Senatov F, Kaloshkin S, Anisimova N, Kiselevskiy M, Knyazeva M, Kukui D, Walther F (2021) Biomineralization, dissolution and cellular studies of silicate bioceramics prepared from eggshell and rice husk. Mater Sci Eng, C 118:111456

    Article  CAS  Google Scholar 

  203. Peng W, Huan Z, Pei G, Li Y, Cao Y, Jiang L, Zhu Y (2021) Silicate bioceramics elicit proliferation and odonto-genic differentiation of human dental pulp cells, Dent Mater J

  204. Li H, Wang W, Chang J (2021) Calcium silicate enhances immunosuppressive function of MSCs to indirectly modulate the polarization of macrophages. Regen Biomater 8(6):rbab056

    Article  CAS  Google Scholar 

  205. Liu L, Yu F, Li L, Zhou L, Zhou T, Xu Y, Lin K, Fang B, Xia L (2021) Bone marrow stromal cells stimulated by strontium-substituted calcium silicate ceramics: release of exosomal miR-146a regulates osteogenesis and angiogenesis. Acta Biomater 119:444–457

    Article  CAS  Google Scholar 

  206. Zhao F, Lei B, Li X, Mo Y, Wang R, Chen D, Chen X (2018) Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials 178:36–47

    Article  CAS  Google Scholar 

  207. Gou Z, Chang J, Zhai W (2005) Preparation and characterization of novel bioactive dicalcium silicate ceramics. J Eur Ceram Soc 25:1507–1514

    Article  CAS  Google Scholar 

  208. Gou Z, Chang J (2004) Synthesis and in vitro bioactivity of dicalcium silicate powders. J Eur Ceram Soc 24:93–99

    Article  CAS  Google Scholar 

  209. Zhao W, Chang J (2004) Sol-gel synthesis and in vitro bioactivity of tricalcium silicate powder. Mater Lett 58:2350–2353

    Article  CAS  Google Scholar 

  210. Zhao W, Wang J, Zhai W, Wang Z, Chang J (2005) The Self-setting properties and in vitro bioactivity of tricalcium silicate. Biomaterials 26:6113–6121

    Article  CAS  Google Scholar 

  211. Gou Z, Chang J, Zhai W, Wang J (2005) Study on the self-setting property and the in vitro bioactivity of beta-Ca2SiO4. J Biomed Mater Res Part B Appl Biomater 73:244–251

    Article  CAS  Google Scholar 

  212. Liu X, Tao S, Ding C (2002) Bioactivity of plasma sprayed declaim silicate coatings. Biomaterials 23:963–968

    Article  CAS  Google Scholar 

  213. Venkatraman SK, Choudhary R, Krishnamurithy G, Raghavendran HRB, Murali MR, Kamarul T, Suresh A, Abraham J, Swamiappan S (2021) Biomineralization, mechanical, antibacterial and biological investigation of larnite and rankinite bioceramics. Mater Sci Eng C 118:111466

    Article  CAS  Google Scholar 

  214. Zhong H, Wang L, Fan Y, He L, Lin K, Jiang W, Chang J, Chen L (2011) Mechanical properties and bioactivity of β-Ca2SiO4 ceramics synthesized by spark plasma sintering. Ceram Int 37(7):2459–2465

    Article  CAS  Google Scholar 

  215. Zhong H, Wang L, He L, Jiang W, Zhai W, Lin K, Chen L, Chang J (2011) Fabrication and characterization of tricalcium silicate bioceramics with high mechanical properties by spark plasma sintering. Int J Appl Ceram Technol 8(3):501–510

    Article  CAS  Google Scholar 

  216. Zhao W, Chang J (2005) Preparation and characterization of novel tricalcium silicate bioceramics. Biomaterials 73(1):86–89

    Google Scholar 

  217. Liu W-C, Hu C-C, Tseng Y-Y, Sakthivel R, Fan K-S, Wang A-N, Wang Y-M, Chung R-J (2020) Study on strontium doped tricalcium silicate synthesized through sol-gel process. Mater Sci Eng, C 108:110431

    Article  CAS  Google Scholar 

  218. Jodati H, Yilmaz B, Evis Z (2020) Calcium zirconium silicate (baghdadite) ceramic as a biomaterial. Ceram Int 46(14):21902–21909

    Article  CAS  Google Scholar 

  219. Saint-Jean S, Camiré C, Nevsten P, Hansen S, Ginebra M-P (2005) Study of the reactivity and in vitro bioactivity of Sr-substituted α-TCP cements. J Mater Sci Mater Med 16:993–1001

    Article  CAS  Google Scholar 

  220. Lin K, Xia L, Li H, Jiang X, Pan H, Xu Y, Lu W, Zhang Z, Chang J (2013) Enhanced osteoporotic bone regeneration by strontium-substituted calcium silicate bioactive ceramics. Biomaterials 34:10028

    Article  CAS  Google Scholar 

  221. Lin K, Chang J, Liu Z, Zeng Y, Shen R (2009) Fabrication and characterization of 45S5 bioglass reinforced macroporous calcium silicate bioceramics. J Eur Ceram Soc 29(14):2937–2943

    Article  CAS  Google Scholar 

  222. Hench LL (1993) An introduction to bioceramics. World scientific

    Book  Google Scholar 

  223. Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74(7):1487–1510

    Article  CAS  Google Scholar 

  224. Koerten HK, van der Meulen J (1999) Degradation of calcium phosphate ceramics. J Biomed Mater Res 44(1):78–86

    Article  CAS  Google Scholar 

  225. Lu J, Descamps M, Dejou J, Koubi G, Hardouin P, Lemaitre J, Proust JP (2002) The biodegradation mechanism of calcium phosphate biomaterials in bone. J Biomed Mater Res 63(4):408–412

    Article  CAS  Google Scholar 

  226. Niinomi M (2008) Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater 1(1):30–42

    Article  Google Scholar 

  227. Ramaswamy Y, Wu C, van Hummel A, Combes V, Grau G, Zreiqat H (2008) The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials 29:4392–4402

    Article  CAS  Google Scholar 

  228. Pham DQ, Berndt CC, Cizek J, Gbureck U, Zreiqat H, Lu Z, Ang ASM (2021) Baghdadite coating formed by hybrid water-stabilized plasma spray for bioceramic applications: mechanical and biological evaluations. Mater Sci Eng, C 122:111873

    Article  CAS  Google Scholar 

  229. Sun J, Wei L, Liu X, Li J, Li B, Wang G, Meng F (2008) Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. Acta Biomater 5:1284–1293

    Article  CAS  Google Scholar 

  230. Sun J, Li J, Liu X, Wei L, Wang G, Meng F (2009) Proliferation and gene expression of osteoblasts cultured in DMEM containing the ionic products of dicalcium silicate coating. Biomed Pharmacother 63:650–657

    Article  CAS  Google Scholar 

  231. Xynos I, Edgar A, Buttery L, Hench LL, Polak JM (2000) Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:641

    Article  CAS  Google Scholar 

  232. Christodoulou I, Buttery L, Saravanapavan P, Tai G, Hench L, Polak J (2005) Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J Biomed Mater Res Part B Appl Biomater 74:529–537

    Article  CAS  Google Scholar 

  233. Tsigkou O, Jones J, Polak J, Stevens M (2009) Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 bioglass (R) conditioned medium in the absence of osteogenic supplements. Biomaterials 30:3542–3550

    Article  CAS  Google Scholar 

  234. Casey WH, Westrich HR, Banfield JF, Ferruzzi G, Arnold GW (1993) Leaching and reconstruction at the surfaces of dissolving chain-silicate minerals. Nature 366(6452):253–256

    Article  CAS  Google Scholar 

  235. Zhao L, Lin K, Zhang M, Xiong C, Bao Y, Pang X, Chang J (2011) The influences of poly (lactic-co-glycolic acid)(PLGA) coating on the biodegradability, bioactivity, and biocompatibility of calcium silicate bioceramics. J Mater Sci 46(14):4986–4993

    Article  CAS  Google Scholar 

  236. Suebwongnat S, Monvisade P, Siriphannon P (2013) Mechanical properties and bioactivity of calcium silicate/poly(ethylene terephthalate- co -caprolactone) composites. Mater Res Innov 17:s118–s123

    Article  Google Scholar 

  237. Ni S, Lin K, Chang J, Chou L (2008) β-CaSiO3/β-Ca3 (PO4)2 composite materials for hard tissue repair: In vitro studies. Biomaterials 85(1):72–82

    Google Scholar 

  238. Fei L, Wang C, Xue Y, Lin K, Chang J, Sun J (2012) Osteogenic differentiation of osteoblasts induced by calcium silicate and calcium silicate/β-tricalcium phosphate composite bioceramics. J Biomed Mater Res B Appl Biomater 100(5):1237–1244

    Article  CAS  Google Scholar 

  239. Farley JR, Hall SL, Tanner MA, Wergedal JE (1994) Specific activity of skeletal alkaline phosphatase in human osteoblast-line cells regulated by phosphate, phosphate esters, and phosphate analogs and release of alkaline phosphatase activity inversely regulated by calcium. J Bone Miner Res 9(4):497–508

    Article  CAS  Google Scholar 

  240. Wang C, Lin K, Chang J, Sun J (2014) The stimulation of osteogenic differentiation of mesenchymal stem cells and vascular endothelial growth factor secretion of endothelial cells by β-CaSiO3/β-Ca3 (PO4)2 scaffolds. J Biomed Mater Res, Part A 102(7):2096–2104

    Article  CAS  Google Scholar 

  241. Zhang H, Jiao C, He Z, Ge M, Tian Z, Wang C, Wei Z, Shen L, Liang H (2021) Fabrication and properties of 3D printed zirconia scaffold coated with calcium silicate/hydroxyapatite. Ceram Int 47(19):27032–27041

    Article  CAS  Google Scholar 

  242. Ma J, Wang C, Huang B, Zhao X, Chen C, Yu H (2021) In vitro degradation and apatite formation of magnesium and zinc incorporated calcium silicate prepared by sol-gel method. Mater Technol 36(7):420–429

    Article  CAS  Google Scholar 

  243. He F, Qiu C, Lu T, Shi X, Ye J (2021) Conjunction of gallium doping and calcium silicate mediates osteoblastic and osteoclastic performances of tricalcium phosphate bioceramics. Biomed Mater 17(1):015012

    Article  Google Scholar 

  244. Ni S, Chang J, Chou L, Zhai W (2007) Comparison of osteoblast-like cell responses to calcium silicate and tricalcium phosphate ceramics in vitro. J Biomed Mater Res Part B Appl Biomater 80(1):174–183

    Article  CAS  Google Scholar 

  245. Han P, Wu C, Xiao Y (2013) The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomater Sci 1(4):379–392

    Article  CAS  Google Scholar 

  246. Wang C, Xue Y, Lin K, Lu J, Chang J, Sun J (2012) The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3 (PO4)2 composite bioceramics. Acta Biomater 8(1):350–360

    Article  CAS  Google Scholar 

  247. Zhang N, Molenda JA, Fournelle JH, Murphy WL, Sahai N (2010) Effects of pseudowollastonite (CaSiO3) bioceramic on in vitro activity of human mesenchymal stem cells. Biomaterials 31(30):7653–7665

    Article  CAS  Google Scholar 

  248. Shao H, Yu X, Lin T, Peng J, Wang A, Zhang Z, Zhang Y, Liu S, Zhao M (2020) Effect of PCL concentration on PCL/CaSiO3 porous composite scaffolds for bone engineering. Ceram Int 46(9):13082–13087

    Article  CAS  Google Scholar 

  249. Knabe C, Adel-Khattab D, Hübner WD, Peters F, Knauf T, Peleska B, Barnewitz D, Genzel A, Kusserow R, Sterzik F (2019) Effect of silicon-doped calcium phosphate bone grafting materials on bone regeneration and osteogenic marker expression after implantation in the ovine scapula. J Biomed Mater Res B Appl Biomater 107(3):594–614

    Article  CAS  Google Scholar 

  250. Zhao R, Chen S, Zhao W, Yang L, Yuan B, Ioan VS, Iulian AV, Yang X, Zhu X, Zhang X (2020) A bioceramic scaffold composed of strontium-doped three-dimensional hydroxyapatite whiskers for enhanced bone regeneration in osteoporotic defects. Theranostics 10(4):1572

    Article  CAS  Google Scholar 

  251. Barrias CC, Martins MCL, Almeida-Porada G, Barbosa MA, Granja PL (2009) The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers. Biomaterials 30(3):307–316

    Article  CAS  Google Scholar 

  252. Dou Y, Wu C, Chang J (2012) Preparation, mechanical property and cytocompatibility of poly (l-lactic acid)/calcium silicate nanocomposites with controllable distribution of calcium silicate nanowires. Acta Biomater 8(11):4139–4150

    Article  CAS  Google Scholar 

  253. Zhang N, Zhai D, Chen L, Zou Z, Lin K, Chang J (2014) Hydrothermal synthesis and characterization of Si and Sr co-substituted hydroxyapatite nanowires using strontium containing calcium silicate as precursors. Mater Sci Eng, C 37:286–291

    Article  CAS  Google Scholar 

  254. Yu X, Wang X, Li D, Sheng R, Qian Y, Zhu R, Wang X, Lin K (2022) Mechanically reinforced injectable bioactive nanocomposite hydrogels for in-situ bone regeneration. Chem Eng J 433:132799

    Article  CAS  Google Scholar 

  255. Lin K, Chang J, Cheng R (2007) In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers. Acta Biomater 3(2):271–276

    Article  CAS  Google Scholar 

  256. Huang Y-R, Wu I-T, Chen C-C, Ding S-J (2020) In vitro comparisons of microscale and nanoscale calcium silicate particles. J Mater Chem B 8(28):6034–6047

    Article  Google Scholar 

  257. Shie M-Y, Ding S-J, Chang H-C (2011) The role of silicon in osteoblast-like cell proliferation and apoptosis. Acta Biomater 7(6):2604–2614

    Article  CAS  Google Scholar 

  258. De Aza P, Luklinska Z, Martinez A, Anseau M, Guitián F, Aza S (2000) Morphological and structural study of pseudowollastonite implants in bone. J Microsc 197:60–67

    Article  Google Scholar 

  259. Xue W, Liu X, Zheng X, Ding C (2005) In vivo evaluation of plasma-sprayed wollastonite coating. Biomaterials 26:3455–3460

    Article  CAS  Google Scholar 

  260. Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, Ning C (2008) Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials 29:2588–2596

    Article  CAS  Google Scholar 

  261. Du Z, Leng H, Guo L, Huang Y, Zheng T, Zhao Z, Liu X, Zhang X, Cai Q, Yang X (2020) Calcium silicate scaffolds promoting bone regeneration via the doping of Mg2+ or Mn2+ ion. Compos B Eng 190:107937

    Article  CAS  Google Scholar 

  262. Liu S, Jin F, Lin K, Lu J, Sun J, Chang J, Dai K, Fan C (2013) The effect of calcium silicate on in vitro physiochemical properties and in vivo osteogenesis, degradability and bioactivity of porous β-tricalcium phosphate bioceramics. Biomed Mater 8(2):025008

    Article  CAS  Google Scholar 

  263. Mirkhalaf M, Goldsmith J, Ren J, Dao A, Newman P, Schindeler A, Woodruff MA, Dunstan CR, Zreiqat H (2021) Highly substituted calcium silicates 3D printed with complex architectures to produce stiff, strong and bioactive scaffolds for bone regeneration. Appl Mater Today 25:101230

    Article  Google Scholar 

  264. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505

    Article  CAS  Google Scholar 

  265. Tong H-W, Wang M (2010) Electrospinning of fibrous polymer scaffolds using positive voltage or negative voltage: a comparative study. Biomed Mater 5(5):054110

    Article  CAS  Google Scholar 

  266. Guarino V, Causa F, Taddei P, Di Foggia M, Ciapetti G, Martini D, Fagnano C, Baldini N, Ambrosio L (2008) Polylactic acid fibre-reinforced polycaprolactone scaffolds for bone tissue engineering. Biomaterials 29(27):3662–3670

    Article  CAS  Google Scholar 

  267. Fan H, Tao H, Wu Y, Hu Y, Yan Y, Luo Z (2010) TGF-β3 immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration. J Biomed Mater Res, Part A 95(4):982–992

    Article  CAS  Google Scholar 

  268. Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518–524

    Article  CAS  Google Scholar 

  269. Zhang Z, Shao H, Lin T, Zhang Y, He J, Wang L (2019) 3D gel printing of porous calcium silicate scaffold for bone tissue engineering. J Mater Sci 54(14):10430–10436

    Article  CAS  Google Scholar 

  270. Wang C, Chen B, Wang W, Zhang X, Hu T, He Y, Lin K, Liu X (2019) Strontium released bi-lineage scaffolds with immunomodulatory properties induce a pro-regenerative environment for osteochondral regeneration. Mater Sci Eng, C 103:109833

    Article  CAS  Google Scholar 

  271. Tat SK, Pelletier J-P, Mineau F, Caron J, Martel-Pelletier J (2011) Strontium ranelate inhibits key factors affecting bone remodeling in human osteoarthritic subchondral bone osteoblasts. Bone 49(3):559–567

    Article  CAS  Google Scholar 

  272. Zhou P, Xia D, Ni Z, Ou T, Wang Y, Zhang H, Mao L, Lin K, Xu S, Liu J (2021) Calcium silicate bioactive ceramics induce osteogenesis through oncostatin M. Bioact Mater 6(3):810–822

    Article  CAS  Google Scholar 

  273. Kim E-J, Bu S-Y, Sung M-K, Kang M-H, Choi M-K (2013) Analysis of antioxidant and anti-inflammatory activity of silicon in murine macrophages. Biol Trace Elem Res 156(1):329–337

    Article  CAS  Google Scholar 

  274. Wang C, Xue Y, Lin K, Lu J, Chang J, Sun J (2011) The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Acta Biomater 8:350–360

    Article  CAS  Google Scholar 

  275. Liu G, Wu C, Fan W, Miao X, Sin D-C, Crawford R, Xiao Y (2011) The effects of bioactive akermanite on physiochemical, drug-delivery, and biological properties of poly(lactide-co-glycolide) beads. J Biomed Mater Res Part B Appl biomater 96:360–368

    Article  CAS  Google Scholar 

  276. Siriphannon P, Kameshima Y, Yasumori A, Okada K, Hayashi S (2000) Influence of preparation conditions on the microstructure and bioactivity of α-CaSiO3 ceramics. J Biomed Mater Res, Part A 52:30–39

    Article  CAS  Google Scholar 

  277. Mehrali M, Moghaddam E, Shirazi S, Baradaran S, Mehrali M, Tahan Latibari S, Metselaar H, Kadri NA, Zandi K, Abu Osman NA (2014) Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate-reduced graphene oxide composites. ACS Appl Mater Interfaces 6:3947

    Article  CAS  Google Scholar 

  278. Wang C, Lin K, Chang J, Sun J (2012) Osteogenesis and angiogenesis induced by porous beta-CaSiO3/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways. Biomaterials 34:64

    Article  CAS  Google Scholar 

  279. Röthlisberger F, Seifert F, Czank M (1990) Chemical control of the commensurate-incommensurate phase transition in synthetic melilites. Eur J Mineral 28:585–594

    Article  Google Scholar 

  280. Bhatkar V, Bhatkar N (2011) Combustion synthesis and photoluminescence study of silicate biomaterials. Bull Mate Sci 34:1281

    Article  CAS  Google Scholar 

  281. Yang H, Hazen RM, Downs RT, Finger LW (1997) Structural change associated with the incommensurate-normal phase transition in akermanite, Ca2MgSi2O7, at high pressure. Phys Chem Miner 24(7):510–519

    Article  CAS  Google Scholar 

  282. Thompson RM, Downs RT (2004) Model pyroxenes II: Structural variation as a function of tetrahedral rotation. Am Miner 89(4):614–628

    Article  CAS  Google Scholar 

  283. Finger LW, Ohashi Y (1976) The thermal expansion of diopside to 800 degrees C and a refinement of the crystal structure at 700 degrees C. Am Miner 61(3–4):303–310

    CAS  Google Scholar 

  284. Srinath P, Azeem PA, Reddy KV, Chiranjeevi P, Bramanandam M, Rao RP (2021) A novel cost-effective approach to fabricate diopside bioceramics: a promising ceramics for orthopedic applications. Adv Powder Technol 32(3):875–884

    Article  CAS  Google Scholar 

  285. Sharp Z, Hazen R, Finger L (1987) High-pressure crystal chemistry of monticellite, CaMgSiO4. Am Miner 72(7–8):748–755

    CAS  Google Scholar 

  286. Brown G, West JX (1928) The structure of monticellite (MgCaSiO4). Zeitschrift für Kristallographie-Crystal Mater 66(1–6):154–161

    Article  Google Scholar 

  287. Wu C, Chang J (2004) Synthesis and apatite-formation ability of akermanite. Mater Lett 58(19):2415–2417

    Article  CAS  Google Scholar 

  288. Wu C, Chang J, Ni S, Wang J (2006) In vitro bioactivity of akermanite ceramics. J Biomed Mater Res Part A 76:73–80

    Article  CAS  Google Scholar 

  289. Wu C, Chang J (2006) A novel akermanite bioceramic: preparation and characteristics. J Biomater Appl 21(2):119–129

    Article  CAS  Google Scholar 

  290. Wu C, Chang J (2007) Degradation, bioactivity, and cytocompatibility of diopside, akermanite, and bredigite ceramics. J Biomed Mater Res Part B Appl Biomater 83(1):153–160

    Article  CAS  Google Scholar 

  291. Chen X, Ou J, Yan W, Huang Z, Kang Y, Yin G (2010) Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO-CaO-SiO2 system. J Mater Sci Mater Med 21:1463–1471

    Article  CAS  Google Scholar 

  292. Choudhary R, Koppala S, Swamiappan S (2015) Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol–gel combustion synthesis. J Asian Ceram Soc 3:173

    Article  Google Scholar 

  293. Tavangarian F, Zolko CA, Davami K (2021) Synthesis, characterization and formation mechanisms of nanocrystalline akermanite powder. J Market Res 11:792–800

    CAS  Google Scholar 

  294. Sharafabadi A, Abdellahi M, Kazemi A, Khandan A, Ozada N (2016) A novel and economical route for synthesizing akermanite (Ca2MgSi2O7) bioceramic. Mater Sci Eng C 71:1072

    Article  CAS  Google Scholar 

  295. Myat-Htun M, Noor A-FM, Kawashita M, Ismail YMB (2020) Enhanced sinterability and in vitro bioactivity of barium-doped akermanite ceramic. Ceram Int 46(11):19062–19068

    Article  CAS  Google Scholar 

  296. Mohammadi H, Ismail YMB, Shariff KA, Noor A-FM (2021) Effect of strontium substitution on structural, sinterability, physicomechanical and biological properties of akermanite ceramic. J Mech Behav Biomed Mater 116:104379

    Article  CAS  Google Scholar 

  297. Huang X-H, Chang J (2008) Preparation of nanocrystalline bredigite powders with apatite-forming ability by a simple combustion method. Mater Res Bull 43:1615–1620

    Article  CAS  Google Scholar 

  298. Tavangarian F, Emadi R (2011) Mechanism of nanostructure bredigite formation by mechanical activation with thermal treatment. Mater Lett 65:2354–2356

    Article  CAS  Google Scholar 

  299. Wu C, Chang J (2007) Synthesis and in vitro bioactivity of bredigite powders. J Biomater Appl 21:251–263

    Article  CAS  Google Scholar 

  300. Wei J, Lu J, Yan Y, Li H, Ma J, Wu X, Dai C, Liu C (2011) Preparation and characterization of well ordered mesoporous diopside nanobiomaterial. J Nanosci Nanotechnol 11:10746–10749

    Article  CAS  Google Scholar 

  301. Nonami T, Takahashi C, Yamazaki J (1995) Synthesis of diopside by alkoxide method and coating on titanium. J Ceram Soc Jpn 103(1199):703–708

    Article  CAS  Google Scholar 

  302. Iwata N, Lee G-H, Tokuoka Y, Kawashima N (2004) Sintering behavior and apatite formation of diopside prepared by co-precipitation process. Colloids Surf B Biointerfaces 34:239–245

    Article  CAS  Google Scholar 

  303. Shahrouzifar M, Salahinejad E (2019) Strontium doping into diopside tissue engineering scaffolds. Ceram Int 45(8):10176–10181

    Article  CAS  Google Scholar 

  304. Nonami T (1991) Developmental study of diopside for use as implant material. In: MRS online proceedings library archive. p 252

  305. Iwata NY, Lee G-H, Tsunakawa S, Tokuoka Y, Kawashima N (2004) Preparation of diopside with apatite-forming ability by sol–gel process using metal alkoxide and metal salts. Colloids Surf B 33(1):1–6

    Article  CAS  Google Scholar 

  306. Hafezi M, Moztarzadeh F, Talebi A (2010) Sol-gel synthesis and apatite-formation ability of nanostructure merwinite (Ca3MgSi2O8) as a novel bioceramic. J Ceram Process Res 11:765

    Google Scholar 

  307. Hafezi-Ardakani M, Moztarzadeh F, Rabiee M, Talebi AR (2011) Synthesis and characterization of nanocrystalline merwinite (Ca3Mg (SiO4)2) via sol-gel method. Ceram Int 37(1):175–180

    Article  CAS  Google Scholar 

  308. Praharaj S, Venkatraman SK, Vasantharaman R, Swamiappan S (2021) Sol-gel combustion synthesis of merwinite and its biomedical applications. Mater Lett 300:130108

    Article  CAS  Google Scholar 

  309. Ou J, Kang Y, Huang Z, Chen X, Wu J, Xiao R, Yin G (2008) Preparation and in vitro bioactivity of novel merwinite ceramic. Biomed Mater 3(1):015015

    Article  CAS  Google Scholar 

  310. Chen X, Ou J, Kang Y, Huang Z, Zhu H, Yin G, Wen H (2008) Synthesis and characteristics of monticellite bioactive ceramic. J Mater Sci Mater Med 19(3):1257–1263

    Article  CAS  Google Scholar 

  311. Kalantari E, Naghib SM, Reza Naimi-Jamal M, Aliahmadi A, Iravani NJ, Mozafari M (2018) Nanostructured monticellite for tissue engineering applications - part I: microstructural and physicochemical characteristics. Ceram Int 44(11):12731–12738. https://doi.org/10.1016/j.ceramint.2018.04.076

    Article  CAS  Google Scholar 

  312. Kalantari E, Naghib SM (2019) A comparative study on biological properties of novel nanostructured monticellite-based composites with hydroxyapatite bioceramic. Mater Sci Eng C 98:1087–1096. https://doi.org/10.1016/j.msec.2018.12.140

    Article  CAS  Google Scholar 

  313. Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12:155–163

    Article  CAS  Google Scholar 

  314. Wu C, Chang J, Zhai W, Ni S, Wang J (2006) Porous akermanite scaffolds for bone tissue engineering: preparation, characterization, andin vitro studies. J Biomed Mater Res Part B Appl Biomater 78:47–55

    Article  CAS  Google Scholar 

  315. Collin MS, Venkatraman SK, Sriramulu M, Shanmugam S, Drweesh EA, Elnagar MM, Mosa E, Sasikumar S (2021) Solution combustion synthesis of functional diopside, akermanite, and merwinite bioceramics: excellent biomineralization, mechanical strength, and antibacterial ability. Mater Today Commun 27:102365

    Article  CAS  Google Scholar 

  316. Radin SR, Ducheyne P (1993) The effect of calcium phosphate ceramic composition and structure on in vitro behavior. II. Precipitation. J Biomed Mater Res 27(1):35–45

    Article  CAS  Google Scholar 

  317. Radin SR, Ducheyne P (1994) Effect of bioactive ceramic composition and structure on in vitro behaviour. III. Porous versus dense ceramics. J Biomed Mater Res 28(11):1303–1309

    Article  CAS  Google Scholar 

  318. Ducheyne P, Radin S, King L (1993) The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. J Biomed Mater Res 27:25–34

    Article  CAS  Google Scholar 

  319. Vallet-Regí M, Salinas A, Román J, Gil M (1999) Effect of magnesium content on the in vitro bioactivity of SiO2–P2O5 sol–gel glasses. J Mater Chem 9:515–518

    Article  Google Scholar 

  320. Pérez-Pariente J, Balas F, Vallet-Regí M (2000) Surface and chemical study of SiO2·P2O5·CaO·(MgO) bioactive glasses. Chem Mater 12(3):750–755

    Article  CAS  Google Scholar 

  321. Liu Q, Cen L, Yin S, Chen L, Liu G, Chang J, Cui L (2008) A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials 29:4792–4799

    Article  CAS  Google Scholar 

  322. Sun H, Wu C, Dai K, Chang J, Tang T (2006) Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics. Biomaterials 27(33):5651–5657

    Article  CAS  Google Scholar 

  323. Sader MS, LeGeros RZ, Soares GA (2009) Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. J Mater Sci - Mater Med 20(2):521–527

    Article  CAS  Google Scholar 

  324. Xia L, Zhang Z, Chen L, Zhang W, Zeng D, Zhang X, Chang J, Jiang X (2011) Proliferation and osteogenic differentiation of human periodontal ligament cells on akermanite and β-TCP bioceramics. Eur Cell Mater 22(68):e82

    Google Scholar 

  325. Ansari M, Malmir F, Salati A (2020) Preparation and characterization of akermanite/merwinite scaffolds for bone tissue repair. J Biomimet Biomater Biomed Eng 44:73–81

    CAS  Google Scholar 

  326. Kobayashi T, Okada K, Kuroda T, Sato K (1997) Osteogenic cell cytotoxicity and biomechanical strength of the new ceramic diopside. Biomaterials 37(1):100–107

    CAS  Google Scholar 

  327. Miake Y, Yanagisawa T, Yajima Y, Noma H, Yasui N, Nonami T (1995) High-resolution and analytical electron microscopic studies of new crystals induced by a bioactive ceramic (diopside). J Dent Res 74(11):1756–1763

    Article  CAS  Google Scholar 

  328. Su Y-H, Pan C-T, Tseng Y-S, Zhang J, Chen W-F (2021) Rare earth element cerium substituted Ca–Si–Mg system bioceramics: From mechanism to mechanical and degradation properties. Ceram Int 47:19414

    Article  CAS  Google Scholar 

  329. Bakhsheshi-Rad H, Chen X, Ismail A, Aziz M, Hamzah E, Najafinezhad A (2019) A new multifunctional monticellite-ciprofloxacin scaffold: preparation, bioactivity, biocompatibility, and antibacterial properties. Mater Chem Phys 222:118–131

    Article  CAS  Google Scholar 

  330. Chen X-C, Yin G-F, Ou J, Zhu H-Y (2007) In vitro bioactivity of merwinite prepared by sol-gel process. J Funct Mater 38(3):435

    CAS  Google Scholar 

  331. Xia L, Yin Z, Mao L, Wang X, Liu J, Jiang X, Zhang Z, Lin K, Chang J, Fang B (2016) Akermanite bioceramics promote osteogenesis, angiogenesis and suppress osteoclastogenesis for osteoporotic bone regeneration. Sci Rep 6:22005

    Article  CAS  Google Scholar 

  332. Cui J, Xia L, Lin K, Wang X (2021) In situ construction of a nano-structured akermanite coating for promoting bone formation and osseointegration of Ti–6Al–4V implants in a rabbit osteoporosis model. J Mater Chem B 9(46):9505–9513

    Article  CAS  Google Scholar 

  333. Razavi M, Fathi M, Savabi O, Beni BH, Vashaee D, Tayebi L (2014) Surface microstructure and in vitro analysis of nanostructured akermanite (Ca2MgSi2O7) coating on biodegradable magnesium alloy for biomedical applications. Colloids Surf B 117:432–440

    Article  CAS  Google Scholar 

  334. Gu H, Guo F, Zhou X, Gong L, Zhang Y, Zhai W, Chen L, Cen L, Yin S, Chang J, Cui L (2011) The stimulation of osteogenic differentiation of human adipose-derived stem cells by ionic products from akermanite dissolution via activation of the ERK pathway. Biomaterials 32:7023–7033

    Article  CAS  Google Scholar 

  335. Wu C, Zhang M, Zhai D, Yu J, Liu Y, Zhu H, Chang J (2013) Containerless processing for preparation of akermanite bioceramic spheres with homogeneous structure, tailored bioactivity and degradation. J Mater Chem B 1:1019–1026

    Article  CAS  Google Scholar 

  336. Wu C, Chang J, Zhai W, Ni S (2007) A novel bioactive porous bredigite (Ca7MgSi4O16) scaffold with biomimetic apatite layer for bone tissue engineering. J Mater Sci Mater Med 18(5):857–864

    Article  CAS  Google Scholar 

  337. Razavi M, Fathi M, Savabi O, Razavi SM, Heidari F, Manshaei M, Vashaee D, Tayebi L (2014) In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants. Appl Surf Sci 313:60–66. https://doi.org/10.1016/j.apsusc.2014.05.130

    Article  CAS  Google Scholar 

  338. Luo T, Wu C, Zhang Y (2012) The in vivo osteogenesis of Mg or Zr-modified silicate-based bioceramic spheres. J Biomed Mater Res Part A 100:2269–2277

    Google Scholar 

Download references

Acknowledgements

The financial support from CST, UP, Govt. of Uttar Pradesh, and SERB, DST, Govt. of India, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashutosh Kumar Dubey.

Additional information

Handling Editor: Annela M. Seddon.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Yu, X., Kumar, A. et al. Recent advances in silicate-based crystalline bioceramics for orthopedic applications: a review. J Mater Sci 57, 13109–13151 (2022). https://doi.org/10.1007/s10853-022-07444-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07444-w

Navigation