Skip to main content

Advertisement

Log in

Analysis of Antioxidant and Anti-inflammatory Activity of Silicon in Murine Macrophages

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the antioxidant and anti-inflammatory properties of silicon (Si) in the RAW 264.7 murine macrophage cell line. Lipopolysaccharide (LPS) was used to induce inflammatory conditions, and cells were treated with 0, 1, 5, 10, 25, 50, and 100 μM Si in the form of sodium metasilicate. Tert-butylhydroquinone (TBHQ), a well-known antioxidative substance, was used as a positive control to assess the degree of antioxidative and anti-inflammatory properties of Si. Sodium metasilicate at 100 μM suppressed LPS-induced nitric oxide generation from macrophages 36 h after treatment. In addition, 50 μM sodium metasilicate decreased interleukin-6 production, and the degree of suppression was comparable to that of 10 μM TBHQ treatment. LPS-induced messenger RNA (mRNA) expression of tumor necrosis factor-α and inducible nitric oxide synthase was significantly decreased by 1, 5, 10, and 50 μM sodium metasilicate. Cyclooxygenase-2 mRNA expression was also suppressed by 1, 5, 25, and 50 μM sodium metasilicate. Based on these data, Si has the ability to suppress the production of inflammatory cytokines and mediators, possibly through the suppression of radical scavenger activity and down-regulation of gene expression of inflammatory mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jugdaohsingh R, Anderson SH, Tucker KL, Elliott H, Kiel DP, Thompson RP, Powell JJ (2002) Dietary silicon intake and absorption. Am J Clin Nutr 75:887–893

    PubMed  CAS  Google Scholar 

  2. Carlisle EM (1986) Silicon as an essential trace element in animal nutrition. Ciba Found Symp 121:123–139

    PubMed  CAS  Google Scholar 

  3. Lopes PP, Ferreira BJ, Gomes PS, Correia RN, Fernandes MH, Fernandes MH (2011) Silicate and borate glasses as composite fillers: a bioactivity and biocompatibility study. J Mater Sci Mater Med 22:1501–1510

    Article  PubMed  CAS  Google Scholar 

  4. Zhai W, Lu H, Chen L, Lin X, Huang Y, Dai K, Naoki K, Chen G, Chang J (2012) Silicate bioceramics induce angiogenesis during bone regeneration. Acta Biomater 8:341–349

    Article  PubMed  CAS  Google Scholar 

  5. Jacqmin-Gadda H, Commenges D, Letenneur L, Dartigues JF (1996) Silica and aluminum in drinking water and cognitive impairment in the elderly. Epidemiology 7:281–285

    Article  PubMed  CAS  Google Scholar 

  6. Jurkic LM, Cepanec I, Pavelic SK, Pavelic K (2013) Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: new perspectives for therapy. Nutr Metab 10:2 (Lond)

    Article  Google Scholar 

  7. Macdonald HM, Hardcastle AC, Jugdaohsingh R, Fraser WD, Reid DM, Powell JJ (2012) Dietary silicon interacts with oestrogen to influence bone health: evidence from the Aberdeen Prospective Osteoporosis Screening Study. Bone 50:681–687

    Article  PubMed  CAS  Google Scholar 

  8. Carlisle EM, Curran MJ (1987) Effect of dietary silicon and aluminum on silicon and aluminum levels in rat brain. Alzheimer Dis Assoc Disord 1:83–89

    Article  PubMed  CAS  Google Scholar 

  9. Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR, Heiss G (2003) Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes 52:1799–1805

    Article  PubMed  CAS  Google Scholar 

  10. Andriollo-Sanchez M, Hininger-Favier I, Meunier N, Venneria E, O’Connor JM, Maiani G, Coudray C, Roussel AM (2005) Age-related oxidative stress and antioxidant parameters in middle-aged and older European subjects: the ZENITH study. Eur J Clin Nutr 59(Suppl 2):S58–S62

    Article  PubMed  CAS  Google Scholar 

  11. Samiec PS, Drews-Botsch C, Flagg EW, Kurtz JC, Sternberg P Jr, Reed RL, Jones DP (1998) Glutathione in human plasma: decline in association with aging, age-related macular degeneration, and diabetes. Free Radic Biol Med 24:699–704

    Article  PubMed  CAS  Google Scholar 

  12. Sendur OF, Turan Y, Tastaban E, Serter M (2009) Antioxidant status in patients with osteoporosis: a controlled study. Joint Bone Spine 76:514–518

    Article  PubMed  CAS  Google Scholar 

  13. Gonzalez-Munoz MJ, Meseguer I, Sanchez-Reus MI, Schultz A, Olivero R, Benedi J, Sanchez-Muniz FJ (2008) Beer consumption reduces cerebral oxidation caused by aluminum toxicity by normalizing gene expression of tumor necrotic factor alpha and several antioxidant enzymes. Food Chem Toxicol 46:1111–1118

    Article  PubMed  CAS  Google Scholar 

  14. Maehira F, Ishimine N, Miyagi I, Eguchi Y, Shimada K, Kawaguchi D, Oshiro Y (2011) Anti-diabetic effects including diabetic nephropathy of anti-osteoporotic trace minerals on diabetic mice. Nutrition 27:488–495

    Article  PubMed  CAS  Google Scholar 

  15. Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF, Evans BA, Thompson RP, Powell JJ, Hampson GN (2003) Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32:127–135

    Article  PubMed  CAS  Google Scholar 

  16. Watari T, Naito K, Sakamoto K, Kurosawa H, Nagaoka I, Kaneko K (2011) Evaluation of the effect of oxidative stress on articular cartilage in spontaneously osteoarthritic STR/OrtCrlj mice by measuring the biomarkers for oxidative stress and type II collagen degradation/synthesis. Exp Ther Med 2:245–250

    PubMed  CAS  Google Scholar 

  17. Acker CI, Brandao R, Rosario AR, Nogueira CW (2009) Antioxidant effect of alkynylselenoalcohol compounds on liver and brain of rats in vitro. Environ Toxicol Pharmacol 28:280–287

    Article  PubMed  CAS  Google Scholar 

  18. Jugdaohsingh R (2007) Silicon and bone health. J Nutr Health Aging 11:99–110

    PubMed  CAS  Google Scholar 

  19. Bryan N, Ahswin H, Smart N, Bayon Y, Wohlert S, Hunt JA (2012) Reactive oxygen species (ROS)—a family of fate deciding molecules pivotal in constructive inflammation and wound healing. Eur Cell Mater 24:249–265

    PubMed  CAS  Google Scholar 

  20. Hegde ML, Mantha AK, Hazra TK, Bhakat KK, Mitra S, Szczesny B (2012) Oxidative genome damage and its repair: implications in aging and neurodegenerative diseases. Mech Ageing Dev 133:157–168

    Article  PubMed  CAS  Google Scholar 

  21. Schröder HC, Wang XH, Wiens M, Diehl-Seifert B, Kropf K, Schlossmacher U, Muller WE (2012) Silicate modulates the cross-talk between osteoblasts (SaOS-2) and osteoclasts (RAW 264.7 cells): inhibition of osteoclast growth and differentiation. J Cell Biochem 113:3197–3206

    Article  PubMed  Google Scholar 

  22. Pacifici R (2008) Estrogen deficiency, T cells and bone loss. Cell Immunol 252:68–80

    Article  PubMed  CAS  Google Scholar 

  23. Alayan J, Ivanovski S, Gemmell E, Ford P, Hamlet S, Farah CS (2006) Deficiency of iNOS contributes to Porphyromonas gingivalis-induced tissue damage. Oral Microbiol Immunol 21:360–365

    Article  PubMed  CAS  Google Scholar 

  24. Cuzzocrea S, Mazzon E, Dugo L, Genovese T, Di PR, Ruggeri Z, Vegeto E, Caputi AP, Van De Loo FA, Puzzolo D, Maggi A (2003) Inducible nitric oxide synthase mediates bone loss in ovariectomized mice. Endocrinology 144:1098–1107

    Article  PubMed  CAS  Google Scholar 

  25. Lee SK, Huang H, Lee SW, Kim KH, Kim KK, Kim HM, Lee ZH, Kim HH (2004) Involvement of iNOS-dependent NO production in the stimulation of osteoclast survival by TNF-alpha. Exp Cell Res 298:359–368

    Article  PubMed  CAS  Google Scholar 

  26. van’t Hof RJ, Armour KJ, Smith LM, Armour KE, Wei XQ, Liew FY, Ralston SH (2000) Requirement of the inducible nitric oxide synthase pathway for IL-1-induced osteoclastic bone resorption. Proc Natl Acad Sci U S A 97:7993–7998

    Article  Google Scholar 

  27. Kim SF, Huri DA, Snyder SH (2005) Inducible nitric oxide synthase binds, S-nitrosylates, and activates cyclooxygenase-2. Science 310:1966–1970

    Article  PubMed  CAS  Google Scholar 

  28. Hassan HE, Mohamed AA, Bakhiet AO, Ahmed HG (2013) Immunohistochemical expression of COX2 and iNOS in bladder cancer and its association with urinary schistosomiasis among Sudanese patients. Infect Agent Cancer 8:9

    Article  PubMed  Google Scholar 

  29. Salvemini D, Misko TP, Masferrer JL, Seibert K, Currie MG, Needleman P (1993) Nitric oxide activates cyclooxygenase enzymes. Proc Natl Acad Sci U S A 90:7240–7244

    Article  PubMed  CAS  Google Scholar 

  30. Suda K, Udagawa N, Sato N, Takami M, Itoh K, Woo JT, Takahashi N, Nagai K (2004) Suppression of osteoprotegerin expression by prostaglandin E2 is crucially involved in lipopolysaccharide-induced osteoclast formation. J Immunol 172:2504–2510

    PubMed  CAS  Google Scholar 

  31. Pongparadee C, Penserga E, Lee DJ, Chen SL, Gill RS, Hamid A, Kumthornthip W, Liu Y, Meliala L, Misbach HJ, Tan KH, Yeap SS, Yeo SN, Lin HY (2012) Current considerations for the management of musculoskeletal pain in Asian countries: a special focus on cyclooxygenase-2 inhibitors and non-steroid anti-inflammation drugs. Int J Rheum Dis 15:341–347

    Article  PubMed  CAS  Google Scholar 

  32. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM (2003) Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 111:821–831

    PubMed  CAS  Google Scholar 

  33. O’Gradaigh D, Bord S, Ireland D, Compston JE (2003) Osteoclastic bone resorption in rheumatoid arthritis and the acute-phase response. Rheumatology 42:1429–1430 (Oxford)

    Article  PubMed  Google Scholar 

  34. Nakagawa H, Wachi M, Woo JT, Kato M, Kasai S, Takahashi F, Lee IS, Nagai K (2002) Fenton reaction is primarily involved in a mechanism of (−)-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochem Biophys Res Commun 292:94–101

    Article  PubMed  CAS  Google Scholar 

  35. Wattel A, Kamel S, Mentaverri R, Lorget F, Prouillet C, Petit JP, Fardelonne P, Brazier M (2003) Potent inhibitory effect of naturally occurring flavonoids quercetin and kaempferol on in vitro osteoclastic bone resorption. Biochem Pharmacol 65:35–42

    Article  PubMed  CAS  Google Scholar 

  36. Erwig LP, Kluth DC, Walsh GM, Rees AJ (1998) Initial cytokine exposure determines function of macrophages and renders them unresponsive to other cytokines. J Immunol 161:1983–1988

    PubMed  CAS  Google Scholar 

  37. Iqbal J, Sun L, Kumar TR, Blair HC, Zaidi M (2006) Follicle-stimulating hormone stimulates TNF production from immune cells to enhance osteoblast and osteoclast formation. Proc Natl Acad Sci U S A 103:14925–14930

    Article  PubMed  CAS  Google Scholar 

  38. Rahman I, Marwick J, Kirkham P (2004) Redox modulation of chromatin remodeling: impact on histone acetylation and deacetylation, NF-kappaB and pro-inflammatory gene expression. Biochem Pharmacol 68:1255–1267

    Article  PubMed  CAS  Google Scholar 

  39. Jagger CJ, Lean JM, Davies JT, Chambers TJ (2005) Tumor necrosis factor-alpha mediates osteopenia caused by depletion of antioxidants. Endocrinology 146:113–118

    Article  PubMed  CAS  Google Scholar 

  40. Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, Urry ZL, Chambers TJ (2003) A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J Clin Invest 112:915–923

    PubMed  CAS  Google Scholar 

  41. Nielsen FH (2008) A novel silicon complex is as effective as sodium metasilicate in enhancing the collagen-induced inflammatory response of silicon-deprived rats. J Trace Elem Med Biol 22:39–49

    Article  PubMed  CAS  Google Scholar 

  42. Barrett EG, Johnston C, Oberdorster G, Finkelstein JN (1998) Silica-induced chemokine expression in alveolar type II cells is mediated by TNF-alpha. Am J Physiol 275:L1110–L1119

    PubMed  CAS  Google Scholar 

  43. Kim EJ, Bu SY, Sung MK, Choi MK (2013) Effects of silicon on osteoblast activity and bone mineralization of MC3T3-E1 cells. Biol Trace Elem Res 152:105–112

    Article  PubMed  CAS  Google Scholar 

  44. Maziere C, Louvet L, Gomila C, Kamel S, Massy Z, Maziere JC (2009) Oxidized low density lipoprotein decreases Rankl-induced differentiation of osteoclasts by inhibition of Rankl signaling. J Cell Physiol 221:572–578

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (no. 2011-0010880).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mi-Kyeong Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, EJ., Bu, SY., Sung, MK. et al. Analysis of Antioxidant and Anti-inflammatory Activity of Silicon in Murine Macrophages. Biol Trace Elem Res 156, 329–337 (2013). https://doi.org/10.1007/s12011-013-9829-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9829-y

Keywords

Navigation