Skip to main content
Log in

Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO–CaO–SiO2 system

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The aim of this research was to investigate the effect of the chemical composition on the mechanical properties, bioactivity, and cytocompatibility in vitro of bioceramics in the MgO–CaO–SiO2 system. Three single-phase ceramics (merwinite, akermanite and monticellite ceramics) with different MgO contents were fabricated. The mechanical properties were tested by an electronic universal machine, while the bioactivity in vitro of the ceramics was detected by investigating the bone-like apatite-formation ability in simulated body fluid (SBF), and the cytocompatibility was evaluated through osteoblast proliferation and adhesion assay. The results showed that their mechanical properties were improved from merwinite to akermanite and monticellite ceramics with the increase of MgO contents, whereas the apatite-formation ability in SBF and cell proliferation decreased. Furthermore, osteoblasts could adhere, spread and proliferate on these ceramic wafers. Finally, the elongated appearance and minor filopodia of cells on merwinite ceramic were more obvious than the other two ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1972;2:117–41.

    Google Scholar 

  2. Kokubo T, Ito S, Sakka S, Yamamuro T. Formation of a high-strength bioactive glass-ceramic in the system MgO–CaO–SiO2–P2O5. J Mater Sci. 1986;21:536–40.

    Article  CAS  ADS  Google Scholar 

  3. Ohura K, Nakamura T, Yamamuro T, Kokubo T, Ebisawa T, Kotoura T. Bone-bonding ability of P2O5 free CaO·SiO2 glasses. J Biomed Mater Res. 1991;25:357–65.

    Article  CAS  PubMed  Google Scholar 

  4. Hench LL. Bioceramics. J Am Ceram Soc. 1998;81:1705–28.

    Article  CAS  Google Scholar 

  5. Wilson J, Yli-Urpo A, Happonen RP. Bioactive glasses: clinical application. In: Hench LL, Wilson J, editors. An introduction to bioceramics. Advances series in ceramics. Singapore: World Scientific Publishing; 1993. p. 63–74.

    Google Scholar 

  6. Oliveira JM, Correia RN, Fernandes MH. Surface modifications of a glass and a glass-ceramic of the MgO–3CaO·P2O5–SiO2 system in a simulated body fluid. Biomaterials. 1995;16:849–54.

    Article  CAS  PubMed  Google Scholar 

  7. Merrollli A, Tranquilli Leali P, Guidi PL. Comparison in vivo response between a bioactive glass and non-bioactive glass. J Mater Sci: Mater Med. 2000;11:219–22.

    Article  Google Scholar 

  8. Siriphannon P, Hayashi S, Yasumori A, Okada K. Preparation and sintering of CaSiO3 from coprecipitated powder using NaOH as precipitant and its apatite formation in simulated body fluid solution. J Mater Res. 1999;14:529–36.

    Article  CAS  ADS  Google Scholar 

  9. Siriphannon P, Kameshima Y, Yasumori A, Okadaa K, Hayashi S. Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid. J Eur Ceram Soc. 2002;22:511–20.

    Article  CAS  Google Scholar 

  10. Lin KL, Zhai WY, Chang J, Zeng Y, Qian WJ. Study of mechanical property and in vitro biocompatibility of CaSiO3 ceramics. Ceram Inter. 2005;31:323–6.

    Article  CAS  Google Scholar 

  11. Nakajima S, Kurihara Y, Wakatsuki Y, Noma H. Physicochemical characteristics of new reinforcement ceramic implant. Shikwa Gakuho. 1989;89:1709–17.

    CAS  PubMed  Google Scholar 

  12. Nakajima S. Experimental studies of healing process on reinforcement ceramic implantation in rabbit mandible. Shikwa Gakuho. 1990;90:525–53.

    CAS  PubMed  Google Scholar 

  13. De Aza PN, Luklinska ZB, Anseau M. Bioactivity of diopside ceramic in human parotid saliva. J Biomed Mater Res B Appl Biomater. 2005;73B:54–60.

    Article  CAS  Google Scholar 

  14. Nonami T, Tsutsumi S. Study of diopside ceramics for biomaterials. J Mater Sci: Mater M. 1999;10:475–9.

    Article  CAS  Google Scholar 

  15. Wu CT, Chang J, Ni SY, Wang JY. In vitro bioactivity of akermanite ceramics. J Biomed Mater Res A. 2006;76:73–80.

    PubMed  Google Scholar 

  16. Wu CT, Chang J. A novel akermanite bioceramic: preparation and characteristics. J Biomater Appl. 2006;21:119–29.

    Article  PubMed  CAS  Google Scholar 

  17. Wu CT, Chang J, Wang JY, Ni SY, Zhai WY. Preparation and characteristics of a calcium magnesium silicate (bredigite) bioactive ceramics. Biomaterials. 2005;26:2925–31.

    Article  CAS  PubMed  Google Scholar 

  18. Chen XC, Ou J, Kang YQ, Huang ZB, Zhu HY, Yin GF, et al. Synthesis and characteristics of monticellite bioactive ceramic. J Mater Sci: Mater Med. 2008;19:1257–63.

    Article  CAS  Google Scholar 

  19. Ou J, Kang YQ, Huang ZB, Chen XC, Wu J, Xiao RC, et al. Preparation and in vitro bioactivity of novel merwinite ceramic. Biomed Mater. 2008;3:1–8.

    Article  CAS  Google Scholar 

  20. Kanzaki N, Onuma K, Treboux G, Tsutsumi S, Ito A. Inhibitory effect of magnesium and zinc on crystallization kinetics of hydroxyapatite (0001) face. J Phys Chem B. 2000;104:4189–94.

    Article  CAS  Google Scholar 

  21. Webster TJ, Ergun C, Doremus RH, Bizios R. Hydroxyapatite with substituted magnesium, zinc, cadmium, and yttrium II: mechanisms of osteoblast adhesion. J Biomed Mater Res. 2002;59:312–7.

    Article  CAS  PubMed  Google Scholar 

  22. Liu CC, Yeh JK, Aloia JF. Magnesium directly stimulates osteoblast proliferation. J Bone Miner Res. 1988;3:S104.

    Google Scholar 

  23. Ni SY, Chang J, Chou L. In vitro studies of novel CaO–SiO2–MgO system composite bioceramics. J Mater Sci: Mater Med. 2008;19:359–67.

    Article  CAS  Google Scholar 

  24. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27(15):2907–15.

    Article  CAS  PubMed  Google Scholar 

  25. Macaroff PP, Oliveira DM, Ribeiro KF, Lacava ZGM, Lima ECD, Morais PC, et al. Studies of cell toxicity of complexes of magnetic fluids and biological macromolecules. J Magn Magn Mater. 2005;293:293–7.

    Article  CAS  ADS  Google Scholar 

  26. Chen JJ, Gao Y, Zeng F, Li DM, Pan F. Effect of sputtering oxygen partial pressures on structure and physical properties of high resistivity ZnO films. Appl Surf Sci. 2004;223:318–29.

    Article  CAS  ADS  Google Scholar 

  27. Sivakumar M, Rao KP. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres. Biomaterials. 2002;23:3175–81.

    Article  CAS  PubMed  Google Scholar 

  28. Zeng HT, Lacefield WR. XPS, EDX and FTIR analysis of pulsed laser deposited calcium phosphate bioceramic coatings: the effects of various process parameters. Biomaterials. 2000;21:23–30.

    Article  CAS  PubMed  Google Scholar 

  29. Weng J, Liu Q, Wolke JGC, Zhang XD, De GK. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid. Biomaterials. 1997;18:1027–35.

    Article  CAS  PubMed  Google Scholar 

  30. Lin KL, Chang J, Lu JX, Wu W, Zeng Y. Properties of β-Ca3(PO4)2 bioceramics prepared using nano-size powders. Ceram Inter. 2007;33:979–85.

    Article  CAS  Google Scholar 

  31. Ni SY, Chou L, Chang J. Preparation and characterization of forsterite (Mg2SiO4) bioceramics. Ceram Inter. 2007;33:83–8.

    Article  CAS  Google Scholar 

  32. Vallet-Regí V, Salinas AJ, Roman J, Gil M. Effect of magnesium content on the in vitro bioactivity of CaO–MgO–SiO2–P2O5 sol–gel glasses. J Mater Chem. 1999;9:515–8.

    Article  Google Scholar 

  33. Gassan J, Bledzki AK. Alkali treatment of jute fibers: relationship between structure and mechanical properties. J Appl Polym Sci. 1999;71:623–9.

    Article  CAS  Google Scholar 

  34. Ziegler G, Heinrich J, Wötting G. Review relationships between processing, microstructure and properties of dense and reaction-bonded silicon nitride. J Mater Sci. 1987;22:3041–86.

    Article  CAS  ADS  Google Scholar 

  35. Ducheyne P, Radin S, King L. The effect of calcium phosphate ceramic composition and structure on in vitro behavior. I. Dissolution. J Biomed Mater Res. 1993;27:25–34.

    Article  CAS  PubMed  Google Scholar 

  36. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Gene expression profiling of human osteoblasts following treatment with ionic products of bioglass 45S5 dissolution. J Biomed Mater Res. 2001;55:151–7.

    Article  CAS  PubMed  Google Scholar 

  37. Valerio P, Pereira MM, Goes AM, Leite MF. The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials. 2004;25:2941–8.

    Article  CAS  PubMed  Google Scholar 

  38. Gough JE, Notingher I, Hench LL. Osteoblast attachment and mineralized nodule formation on rough and smooth 45S5 bioactive glass monoliths. J Biomed Mater Res. 2004;68:640–50.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports from the Fund for Excellent Young Researchers of the Sichuan Province, China (07ZQ026-118) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangfu Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Ou, J., Wei, Y. et al. Effect of MgO contents on the mechanical properties and biological performances of bioceramics in the MgO–CaO–SiO2 system. J Mater Sci: Mater Med 21, 1463–1471 (2010). https://doi.org/10.1007/s10856-010-4025-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4025-5

Keywords

Navigation