Skip to main content
Log in

The influences of poly(lactic-co-glycolic acid) (PLGA) coating on the biodegradability, bioactivity, and biocompatibility of calcium silicate bioceramics

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Calcium silicate (CaSiO3) bioceramics and polyesters have complementary qualities as potential bone substituted materials. In this study, sintered CaSiO3 bioceramics were prepared and coated with poly(lactic-co-glycolic acid) (PLGA), and the influences of the PLGA coating on the degradation, hydrophilicity, bioactivity, and biocompatibility of CaSiO3 ceramics were investigated. The results showed that the degradation rate was reduced, while hydrophilicity was decreased with the increase of the polymer coating. In addition, the polymer coating resulted in a decrease of the alkaline pH value during the degradation of the ceramics, which indicated an increase of the cell biocompatibility, confirmed by the attachment and proliferation of rMSCs on the surface of the polymer-coated ceramics. Furthermore, the apatite-forming ability of the PLGA-coated CaSiO3 bioceramics was maintained. This study suggested that the coating with PLGA might be a useful method to improve the integrative properties of CaSiO3 bioceramics for applications in bone regeneration and bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hench LL, Polak JM (2002) Science 295:1014

    Article  CAS  Google Scholar 

  2. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) J Biomed Mater Res 24:721

    Article  CAS  Google Scholar 

  3. De Aza PN, Guitian F, De Aza S (1994) Scripta Metall Mater 31:1001

    Article  Google Scholar 

  4. Siriphannon P, Hayashi S, Yasumori A, Okada K (1999) J Mater Res 14:529

    Article  CAS  Google Scholar 

  5. Siriphannon P, Kameshima Y, Yasumori A, Okada K, Hayashi S (2000) J Mater Res 52:30

    Article  CAS  Google Scholar 

  6. Siriphannon P, Kameshima Y, Yasumori A, Okada K, Hayashi S (2002) J Eur Ceram Soc 22:511

    Article  CAS  Google Scholar 

  7. Lin KL, Chang J, Wang ZJ (2005) Inorg Mater 20:692

    CAS  Google Scholar 

  8. Lin KL, Ni SY, Zhai WY, Chang J, Qian WJ, Zeng Y (2005) Ceram Intern 31:323

    Article  CAS  Google Scholar 

  9. Ni SY, Chang J, Chou L (2006) J Biomed Mater Res A 76:196

    Google Scholar 

  10. Ni SY, Chang J, Chou L, Zhai WY (2007) J Biomed Mater Res B 80:174

    Google Scholar 

  11. Xu SF, Lin KL, Wang Z, Chang J, Wang L, Lu JX, Ning CQ (2008) Biomaterials 29:2588

    Article  CAS  Google Scholar 

  12. El-Ghannam A, Ducheyne P, Shapiro IM (1997) Biomaterials 18:295

    Article  CAS  Google Scholar 

  13. Silver IA, Deas J, Erecinska M (2001) Biomaterials 22:175

    Article  CAS  Google Scholar 

  14. Wu CT, Ramaswamy Y, Boughton P, Zreiqat H (2008) Acta Biomater 4:343

    Article  CAS  Google Scholar 

  15. Middleton JC, Tipton AJ (2000) Biomaterials 21:2335

    Article  CAS  Google Scholar 

  16. Huang YC, Connell M, Park Y, Mooney DJ, Rice KG (2003) J Biomed Mater Res A 67A:1384

    Article  CAS  Google Scholar 

  17. Yang ZJ, Best SM, Cameron RE (2009) Adv Mater 21:3900

    Article  CAS  Google Scholar 

  18. Therin M, Christel P, Li SM, Garreau H, Vert M (1992) Biomaterials 13:594

    Article  CAS  Google Scholar 

  19. Bostman O, Pihlajamaki H (2000) Biomaterials 21:2615

    Article  CAS  Google Scholar 

  20. Li H, Chang J (2004) J Mater Sci Mater Med 15:1089

    Article  CAS  Google Scholar 

  21. Li H, Chang J (2004) Biomaterials 25:5473

    Article  CAS  Google Scholar 

  22. Li X, Chang J (2005) J Mater Sci Mater Med 16:361

    Article  CAS  Google Scholar 

  23. Wei J, Heo SJ, Kim DH, Kim SE, Hyun YT, Shin JW (2008) J R Soc Interface 5:617

    Article  CAS  Google Scholar 

  24. Kokubo T, Takadama H (2006) Biomaterials 27:2907

    Article  CAS  Google Scholar 

  25. Lecoeur L, Ouhayoun JP (1997) Biomaterials 18:989

    Article  CAS  Google Scholar 

  26. Zhang ML, Zhai WY, Lin KL, Pan HB, Lu W, Chang J (2010) J Biomed Mater Res B 93B:252

    CAS  Google Scholar 

  27. Li H, Chang J (2005) Polym Degrad Stabil 87:301

    Article  CAS  Google Scholar 

  28. Amaral IR, Cordeiro AL, Sampaio P, Barbosa MA (2007) J Biomat Sci-Polym E 18:469

    Article  CAS  Google Scholar 

  29. Silver IA, Deas J, Erecinska M (2001) Biomaterials 22:175

    Article  CAS  Google Scholar 

  30. Pereira MM, Clark AE, Hench LL (1994) J Biomed Mater Res 28:693

    Article  CAS  Google Scholar 

  31. Mami M, Lucas-Girot A, Oudadesse H, Dorbez-Sridi R, Mezahi F, Dietrich E (2008) Appl Surf Sci 254:7386

    Article  CAS  Google Scholar 

  32. Fujimura K, Bessho K, Okubo Y, Segami N, Iizuka T (2003) Clin. Oral Impl Res 14:659

    Article  Google Scholar 

Download references

Acknowledgement

This study was supported by the Natural Science Foundation of China (Grant no. 30730034, 30900299), Science and Technology Commission of Shanghai Municipality (Grant no. 09JC1415500 09JC1409200), and Chinese Academy of Sciences for Key Topics in Innovation Engineering (Grant no. KGCX2-YW-207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, L., Lin, K., Zhang, M. et al. The influences of poly(lactic-co-glycolic acid) (PLGA) coating on the biodegradability, bioactivity, and biocompatibility of calcium silicate bioceramics. J Mater Sci 46, 4986–4993 (2011). https://doi.org/10.1007/s10853-011-5416-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-011-5416-9

Keywords

Navigation