Skip to main content
Log in

Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Introduction

The objective of this study was to determine the effect of a moderate reduction of dietary magnesium [50% of nutrient requirement (50% NR)] on bone and mineral metabolism in the rat, and to explore possible mechanisms for the resultant reduced bone mass.

Methods

Female rats were 6 weeks of age at the start of study. Serum magnesium (Mg), calcium (Ca), parathyroid hormone (PTH), 1,25(OH)2-vitamin D, alkaline phosphatase, osteocalcin, and pyridinoline were measured during the study at 3- and 6-month time points in control (dietary Mg of 100% NR) and Mg-deficient animals (dietary Mg at 50% NR). Femurs and tibias were also collected for mineral content analyses, micro-computerized tomography, histomorphometry, and immunohistochemical localization of substance P, TNFα, and IL-1β at 3 and 6 months.

Results

Although no significant change in serum Mg was observed, Mg deficiency developed, as assessed by the reduction in bone Mg content at the 3- and 6-month time points (0.69±0.05 and 0.62±0.04% ash, respectively, in the Mg depletion group compared to 0.74±0.04 and 0.67±0.04% ash, respectively, in the control group; p=0.0009). Hypercalcemia did not develop. Although serum Ca level remained in the normal range, it fell significantly with Mg depletion at 3 and 6 months (10.4±0.3 and 9.6±0.3 mg/dl, respectively, compared to 10.5±0.4 and 10.1±0.6 mg/dl, respectively, in the control group; p=0.0076). The fall in serum Ca in the Mg-depleted animals was associated with a fall in serum PTH concentration between 3 and 6 months (603±286 and 505±302 pg/ml, respectively, although it was still higher than the control). The serum 1,25(OH)2-vitamin D level was significantly lower in the Mg depletion group at 6 months (10.6±7.1 pg/ml) than in the control (23.5± 12.7 pg/ml) (p<0.01 by the t-test). In Mg-deficient animals, no difference was noted in markers of bone turnover. Trabecular bone mineral content gain was less over time in the distal femur with Mg deficiency at 3 and 6 months (0.028±0.005 and 0.038±0.007 g, respectively, compared to 0.027±0.004 and 0.048±0.006 g, respectively, in the control group; p<0.005). Histomorphometry at these time points demonstrated decreased trabecular bone volume (15.76±1.93 and 14.19±1.85%, respectively, compared to 19.24±3.10 and 17.30±2.59%, respectively, in the control group; p=0.001). Osteoclast number was also significantly increased with Mg depletion (9.07±1.21 and 13.84±2.06, respectively, compared to 7.02±1.89 and 10.47±1.33, respectively, in the control group; p=0.0003). Relative to the control, immunohistochemical staining intensity of the neurotransmitter substance P and of the cytokines TNFα and IL-1β was increased in cells of the bone microenvironment in the Mg depletion group, suggesting that inflammatory cytokines may contribute to bone loss.

Conclusion

These data demonstrate that Mg intake of 50% NR in the rat causes a reduced bone mineral content and reduced volume of the distal femur. These changes may be related to altered PTH and 1,25(OH)2-vitamin D formation or action as well as to an increase release of substance P and the inflammatory cytokines TNFα and IL-1β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yano K, Heilbrun LK, Wasnich RD, Hankin JH, Vogel JM (1985) The relationship between diet and bone mineral content of multiple skeletal sites in elderly Japanese American men and women living in Hawaii. Am J Clin Nutr 42:877–888

    PubMed  CAS  Google Scholar 

  2. New SA, Bolton-Smith C, Grubb DA, Reid DM (1997) Nutritional influences on bone mineral density: a cross-sectional study in premenopausal women. Am J Clin Nutr 65:1831–1839

    PubMed  CAS  Google Scholar 

  3. New SA, Robins SP, Campbell MK, Martin JC, Garton MJ, Bolton-Smith C, Grubb DA, Lee SJ, Reid DM (2000) Dietary influences on bone mass and bone metabolism: further evidence of a positive link between fruit and vegetable consumption and bone health? Am J Clin Nutr 71:142–151

    PubMed  CAS  Google Scholar 

  4. Tucker KL, Hannan MT, Chen H, Cupples LA, Wilson PW, Kiel DP (1999) Potassium, magnesium and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. Am J Clin Nutr 69:727–736

    PubMed  CAS  Google Scholar 

  5. Carpenter TO, Barton CN, Park YK (2000) Usual dietary magnesium intake in NHANES III is associated with femoral bone mass. J Bone Min Res 15[Suppl 1]:S292

    Google Scholar 

  6. Wang MC, Moore EC, Crawford PB, Hudes M, Sabry ZI, Marcus R, Bachrach LK (1999) Influence of pre-adolescent diet on quantitative ultrasound measurements of the calcaneus in young adult women. Osteoporos Int 9:532–535

    PubMed  CAS  Google Scholar 

  7. Dietary Reference Intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride (1997). National Academy Press, Washington, DC, pp 71–145, 190–249, 392–393

  8. Dietary intake of selected minerals for the United States population: 1999–2000 (April 27, 2004). Department of Health and Human Services, Number 341, pp 1–6

  9. Cleveland LE, Goldman JD, Borrude LG (eds) (1994) Data tables: results from USDA 1994 continuing survey of food intakes by individuals and 1994 diet and health knowledge survey. Agricultural Research Service, U.S. Department of Agriculture, Beltsville, Md.

  10. Nutrient requirements of laboratory animals, 4th edn (1995). National Academy Press, Washington, D.C.

  11. Kenney MA, McCoy H, Williams L (1994) Effects of magnesium deficiency on strength, mass and composition of rat femur. Calcif Tissue Int 54:44–49

    Article  PubMed  CAS  Google Scholar 

  12. Boskey AL, Rimnac CM, Bansal M, Lian J, Boyan BD (1992) Effect of short-term hypomagnesemia on the chemical and mechanical properties of rat bone. J Orthop Res 10:774–783

    Article  PubMed  CAS  Google Scholar 

  13. Mirra JM, Alcock NW, Shils ME, Tannenbaum P (1982) Effects of calcium and magnesium deficiencies on rat skeletal development and parathyroid gland area. Magnesium 1:16–33

    CAS  Google Scholar 

  14. Carpenter TO, Mackowiak SJ, Troiano N, Gundberg CM (1992) Osteocalcin and its message: relationship to bone histology in magnesium-deprived rats. Am J Physiol 263:E107–E114

    PubMed  CAS  Google Scholar 

  15. Rude RK, Kirchen ME, Gruber HE, Meyer MH, Luck JS, Crawford DL (1999) Magnesium deficiency-induced osteoporosis in the rat: uncoupling of bone formation and bone resorption. Magnes Res 12:257–267

    PubMed  CAS  Google Scholar 

  16. Rude RK, Gruber HE, Wei LY, Frausto A, Mills BG (2003) Magnesium Deficiency: Effect on bone and mineral metabolism in the mouse. Calcif Tissue Int 72:32–41

    Article  PubMed  CAS  Google Scholar 

  17. Gruber HE, Rude RK, Wei LY, Frausto A, Mills BG, Norton HJ (2003) Magnesium deficiency: effect on bone mineral density in the mouse appendicular skeleton. BMC Musculoskelet Disord 4:7–11

    Article  PubMed  Google Scholar 

  18. Stendig-Lindberg G, Koeller W, Bauer A, Rob PM (2004) Prolonged magnesium deficiency causes osteoporosis in the rat. J Am Coll Nutr 23:704S–711S

    PubMed  CAS  Google Scholar 

  19. Rude RK, Gruber HE, Norton HJ, Wei LY, Frausto A, Mills BG (2004) Bone loss induced by dietary magnesium reduction to 10% of the nutrient requirement in rats is associated with increased release of substance P and tumor necrosis factor-α. J Nutr 134:79–85

    PubMed  CAS  Google Scholar 

  20. Rude RK (2005) Dietary magnesium reduction to 25% of nutrient requirement disrupts bone and mineral metabolism in the rat. Bone 37:211–219

    Article  PubMed  CAS  Google Scholar 

  21. Gruber HE, Marshall GJ, Nolasco LM, Kirchen ME, Rimoin DL (1988) Alkaline and acid phosphate demonstration in human bone and cartilage: effects of fixation intervals and methacrylate embedments. Stain Technol 63:299–305

    PubMed  CAS  Google Scholar 

  22. Gruber HE (1992) Adaptations of Goldner’s-Masson trichrome stain for the study of undecalcified plastic-embedded bone. Biotech Histochem 67:30–34

    PubMed  CAS  Google Scholar 

  23. Mills BG, Frausto A (1997) Cytokines expressed in multinucleated cells: Paget’s disease and giant cell tumors versus normal bone. Calcif Tissue Int 61:16–21

    Article  PubMed  CAS  Google Scholar 

  24. Mills BG, Frausto A, Brien E (2000) Cytokines associated with the pathophysiology of aggressive fibromatosis. J Orthop Res 18:655–662

    Article  PubMed  CAS  Google Scholar 

  25. Brown EB, Gamba G, Ricarrdi D, Lombardi M, Butters R, Kilfor O, Sun GA, Hediger MA, Herbert SC (1993) Cloning and characterization of an extracelluar Ca2+ sensing receptor from bovine parathyroid. Nature 366:575–580

    Article  PubMed  CAS  Google Scholar 

  26. Rude RK, Oldham SB, Singer FR (1976) Functional hypoparathyroidism and parathyroid hormone end-organ resistance in human Mg deficiency. Clin Endocrinol 5:209–224

    CAS  Google Scholar 

  27. Rude RK, Oldham SB, Sharp Jr CF, Singer FR (1978) Parathyroid hormone secretion in magnesium deficiency. J Clin Endocrinol Metab 47:800–806

    PubMed  CAS  Google Scholar 

  28. Fatemi S, Ryzen E, Flores J, Endres DB, Rude RK (1991) Effect of experimental human magnesium depletion on parathyroid hormone secretion and 1,25-dihydroxyvitamin D metabolism. J Clin Endocrinol Metab 73:1067–1072

    PubMed  CAS  Google Scholar 

  29. Estep H, Shaw WA, Watlington C, Hobe R, Holland W, Tucker StG (1969) Hypocalcemia due to hypomagnesmia and reversible parathyroid hormone unresponsiveness. J Clin Endocrinol Metab 29:842–848

    PubMed  CAS  Google Scholar 

  30. Fatemi S, Ryzen E, Flores JF, Endres DB, Rude RK (1991) Effect of experimental human magnesium depletion on PTH secretion and 1,25(OH)2-vitamin D metabolism. J Clin Endocrinol Metab 72:1067–1072

    PubMed  Google Scholar 

  31. Consensus Development Conference (1991) Prophylaxis and treatment of osteoporosis. Am J Med 90:107–110

    Article  Google Scholar 

  32. Riggs BL, Melton LJ (1992) The prevention and treatment of osteoporosis. N Engl J Med 327:620–627

    Article  PubMed  CAS  Google Scholar 

  33. Aloia JF, Cohn SH, Vaswani A, Yeh JK, Yuen K, Ellis K (1985) Risk factors for postmenopausal osteoporosis. Am J Med 78:95–100

    Article  PubMed  CAS  Google Scholar 

  34. Rico H, Relea P, Revilla M, Hernandez ER, Arribas I, Villa LF (1993) Biochemical markers of nutrition in osteoporosis. Calcif Tissue Int 52:331–333

    Article  PubMed  CAS  Google Scholar 

  35. Rude RK (1998) Magnesium deficiency: a heterogeneous cause of disease in humans. J Bone Miner Res 13:749–758

    Article  PubMed  CAS  Google Scholar 

  36. Stendig-Lindberg G, Tepper R, Leichter I (1993) Trabecular bone density in a two-year controlled trial of peroral magnesium in osteoporosis. Magnes Res 6:155–163

    PubMed  CAS  Google Scholar 

  37. Sojka JE, Weaver CM (1995) Magnesium supplementation and osteoporosis. Nutr Rev 53:71–80

    Article  PubMed  CAS  Google Scholar 

  38. Cohen L, Kitzes R (1981) Infrared spectroscopy and magnesium content of bone mineral in osteoporotic women. Isr J Med Sci 17:1123–1125

    PubMed  CAS  Google Scholar 

  39. Wallach S (1990) Effects of magnesium on skeletal metabolism. Magnes Trace Elem 9:1–14

    PubMed  CAS  Google Scholar 

  40. Mountokalakis T, Singhellakis P, Alevizaki C, Virvadakis K, Ikkos D (1980) Relationship between degree of renal failure and impairment of intestinal magnesium absorption. In: Seelig MS (ed) (1980) Magnesium in Health and Disease. Spectrum, New York pp 453–458

    Google Scholar 

  41. Lowik MRH, van Dokkum W, Kistemaker C, Schaafasma G, Ockhuizen T (1993) Body composition, health status and urinary magnesium excretion among elderly people (Dutch nutrition surveillance system). Magnes Res 63:223–232

    Google Scholar 

  42. Martin BJ (1990) The magnesium load test: Experience in elderly subjects. Aging 2:291–296

    PubMed  CAS  Google Scholar 

  43. Optimal calcium intake (1994) NIH Consens Statement 12:1–24

    Google Scholar 

  44. Heaney RP (2000) Calcium, dairy products and osteoporosis. J Am Coll Nutr 19:83S–99S

    PubMed  CAS  Google Scholar 

  45. Flynn A (2003) The role of dietary calcium in bone health. Proc Nutr Soc 62:851–858

    Article  PubMed  CAS  Google Scholar 

  46. Cashman KD, Flynn A (1999) Optimal nutrition: calcium, magnesium and phosphorus. Proc Nutr Soc 58:477–487

    PubMed  CAS  Google Scholar 

  47. Dawson-Hughes B, Gallai GE, Drall EA, Sadowski L, Sahyoun N, Tannenbaum S (1990) A controlled trial of the effect of calcium supplementation on bone density in postmenopausal women. N Eng J Med 323:878–883

    Article  CAS  Google Scholar 

  48. Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Amaus S, Delmas PD, Heunier PJ (1992) Vitamin D3 and calcium to prevent hip fractures in the elderly women. N Eng J Med 327:1637–1642

    Article  CAS  Google Scholar 

  49. Meyer HE (2004) Calcium and osteoporotic fractures. Brit J Nutr 91:505–506

    Article  PubMed  CAS  Google Scholar 

  50. Prentice A (2003) Diet, nutrition and the prevention of osteoporosis. Pub Health Nutr 7:227–243

    Article  Google Scholar 

  51. Bachrach LK (2001) Acquisition of optimal bone mass in childhood and adolescence. Trends Endocrinol Metab 12:22–28

    Article  PubMed  CAS  Google Scholar 

  52. Weaver CM (2000) Calcium and magnesium requirements of children and adolescents and peak bone mass. Nutrition 16:514–516

    Article  PubMed  CAS  Google Scholar 

  53. Abrams SA, Griffin IJ, Hicks PD, Gunn SK (2004) Pubertal girls only partially adapt to low dietary calcium intakes. J Bone Miner Res 19:759–763

    Article  PubMed  CAS  Google Scholar 

  54. Yano K, Heilbrun LK, Wasnich RD, Hankin JH, Vogel JM (2985) The relationship between diet and bone mineral content of multiple skeletal sites in elderly Japanese-American men and women living in Hawaii. Am J Clin Nutr 42:877–888

    Google Scholar 

  55. Freudenheim JL, Johnson NE, Smith EL (1986) Relationships between usual nutrient intake and bone-mineral content of women 35–65 years of age: longitudinal and cross-sectional analysis. Am J Clin Nutr 44:863–876

    PubMed  CAS  Google Scholar 

  56. Tranquilli AL, Lucino E, Garzetti GG, Romanini C (1994) Calcium, phosphorus and magnesium intakes correlate with bone mineral content in postmenopausal women. Gynecol Endocrinol 8:55–58

    PubMed  CAS  Google Scholar 

  57. New SA, Bolton-Smith C, Grubb DA, Reid DM (1997) Nutritional influences on bone mineral density: A cross-sectional study in premenopausal women. Am J Clin Nutr 65:1831–1839

    PubMed  CAS  Google Scholar 

  58. Macdonald HM, New SA, Golden MHN, Campbell MK, Reid DM (2004) Nutritional associations with bone loss during the menopausal transition: evidence of a beneficial effect of calcium, alcohol, and fruit and vegetable nutrients and of a detrimental effect of fatty acids. Am Soc Clin Nutr 79:155–165

    CAS  Google Scholar 

  59. Gruber HE, Rude RK (2003) Alterations in osteoclast morphology following osteoprotegerin administration in the magnesium-deficient mouse. Biotechnic Histochem 78:231–236

    Article  CAS  Google Scholar 

  60. Rude RK (1996) Magnesium metabolism. In: Bilezikian JP, Raisz L, Rodan G, Markovac J (eds) (1996) Principles of bone biology, 1st edn. Academic Press, San Diego pp 277–293

    Google Scholar 

  61. Rude RK, Adams JS, Ryzen E (1985) Low serum concentrations of 1,25-dihydroxy-vitamin D in human magnesium deficiency. J Clin Endocrinol Metab 61:933–940

    Article  PubMed  CAS  Google Scholar 

  62. Risco F, Traba MaL (1992) Influence of magnesium on the in vitro synthesis of 24, 25-dihydroxyvitamin D3 and 1-α, 25-dihydroxyvitamin D3. Magnes Res 5:5–14

    PubMed  CAS  Google Scholar 

  63. Toba T, Kajita Y, Masuyama R, Takada Y, Suzuki K, Aoe S (2000) Dietary magnesium supplementation affects bone metabolkism and dynamic strength of bone in ovariectomized rats. J Nutr 130:216–220

    PubMed  CAS  Google Scholar 

  64. Francheschi RT, Romano PR, Park K-H, Young J (1988) Regulation of fibronectin and collagen synthesis by 1,25-dihydroxyvitamin D3. In: Norman AW, Schaefer HG, Grigoleit HG, Herrath DV (eds) Vitamin D molecular cellular and clinical endocrinology. W. de Gruyter, Berlin pp 624–625

    Google Scholar 

  65. Kenney MA, McCoy H, Williams L (1994) Effects of magnesium deficiency on strength, mass and composition of rat femur. Calcif Tissue Int 54:44–49

    Article  PubMed  CAS  Google Scholar 

  66. Rude RK, Kirchen ME, Gruber HE, Stasky AA, Meyer MH (1998) Magnesium deficiency induces bone loss in the rat. Miner Electrolyte Metab 24:314–320

    Article  PubMed  CAS  Google Scholar 

  67. Heroux O, Peter D, Tanner A (1974) Effect of a chronic suboptimal intake of magnesium on magnesium and calcium content of bone and on bone strength of the rat. Can J Physiol Pharmacol 53:304–310

    Google Scholar 

  68. Saggese G, Federico G, Bertelloni S, Baroncelli GI, Calisti L (1991) Hypomagnesemia and the parathyroid hormone-vitamin D endocrine system in children with insulin-dependent diabetes mellitus: effect of magnesium administration. J Pediatr 118:220–225

    Article  PubMed  CAS  Google Scholar 

  69. Welsh JJ, Weaver VM (1988) Adaptation to low dietary calcium in magnesium-deficient rats. J Nutr 118:729–734

    PubMed  CAS  Google Scholar 

  70. Papanicolou DA, Wilder RL, Manolagas SC, Chrousos GP (1998) The Pathophysiologic roles in interleukin-6 in human disease. Ann Int Med 128:127–137

    PubMed  Google Scholar 

  71. McIntosh TK (1993) Novel pharmacologic therapies in the treatment of experimental traumatic brain injury: a review. J Am Chem Soc 89:2719–2725

    Google Scholar 

  72. Weglicki WB, Dickens BF, Wagner TL, Chemielinska JJ, Phillips TM (1996) Immunoregulation by neuropeptides in magnesium deficiency: Ex vivo effect of enhanced substance P production on circulation T lymphocytes from magnesium-deficient mice. Magnes Res 9:3–11

    PubMed  CAS  Google Scholar 

  73. Weglicki WB, Mak IT, Dramer JH, Dickens BF, Cassidy MM, Stafford RE, Phillips TM (1996) Role of free radicals and substance P in magnesium deficiency. Cardiovasc Res 31:677–682

    Article  PubMed  CAS  Google Scholar 

  74. Kramer JH, Phillips TM, Weglicki WB (1997) Magnesium-deficiency-enhanced post-ischemic myocardial injury is reduced by substance P receptor blockade. J Mol Cell Cardiol 29:97–110

    Article  PubMed  CAS  Google Scholar 

  75. Malpuech-Brugere C, Nowacki W, Rock E, Gueux E, Mazur A, Rayssiguier Y (1999) Enhanced tumor necrosis factor-a production following endotoxin challenge in rats is an early event during magnesium deficiency. Biochim Biophys Acta 1453:35–40

    PubMed  CAS  Google Scholar 

  76. Nakagawa M Oono H, Nishio A (2001) Enhanced productrion of IL-1β and IL-6 following endotoxin challenge in rats with dietary magnesium deficiency J Vet Med Sci 6:467–469

    Article  Google Scholar 

  77. Malpuech-Brugere C, Nowacki W, Daveau M, Gueux E, Linard C, Rock E, Lebreton JP, Mazur A, Rayssiguier Y (2000) Inflammatory response following acute magnesium deficiency in the rat. Biochim Biophys Acta 1501:91–98

    PubMed  CAS  Google Scholar 

  78. Lerner UH (2000) The role of skeletal nerve fibers in bone metabolism. The Endocrinologist 10:377–382

    Article  Google Scholar 

  79. Rameshwar P, Ganea D, Gascon P (1994) Induction of IL-3 and granulocyte-macrophage colony stimulating factor by substance P in bone marrow cells in partially mediated through the release of IL-1 and IL-6. J Immunol 152:4044–4054

    PubMed  CAS  Google Scholar 

  80. Miyaura C, Kusano K, Masuzawa T, Chaki O, Onoe Y, Aoyagi M, Sasaki T, Tamura T, Koishihara Y, Ohsugi Y, Suda T (1995) Endogenous bone-resorbing factors in estrogen deficiency: cooperative effect of IL-1β and IL-6. J Bone Miner Res 10:1365–1373

    PubMed  CAS  Google Scholar 

  81. Nanes MS (2003) Tumor necrosis factor-a: molecular and cellular mechanism in skeletal pathology. Gene 321:1–15

    Article  PubMed  CAS  Google Scholar 

  82. Pacifici R (1996) Estrogens, cytokines, and pathogenesis of postmenopausal osteoporosis. J Bone Miner Res 11:1043–1051

    PubMed  CAS  Google Scholar 

  83. Manolagas SC, Bellido T, Jilka RL (1995) New insights into the cellular, biochemical, and molecular basis of postmenopausal and senile osteoporosis: roles of IL-6 and gp130. Int J Immunopharmac 17:109–116

    Article  CAS  Google Scholar 

  84. Ralston SH (1994) Analysis of gene expression in human bone biopsies by polymerase chain reaction: Evidence for enhanced cytokine expression in postmenopausal osteoporosis. J Bone Miner Res 9:883–890

    Article  PubMed  CAS  Google Scholar 

  85. Brandi ML, Hukkanen M, Umeda T, Moradi-Bidendi N, Biancche SD, Gross SS, Polak JM, MacIntyre I (1995) Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms. Proc Natl Acad Sci USA 92:2954–2958

    Article  PubMed  CAS  Google Scholar 

  86. Liu CC, Yeh JK, Aloia JF (1988) Magnesium directly stimulates osteoblast proliferation. J Bone Miner Res 3[Suppl 1]:S104

    Google Scholar 

  87. Cohen L, Laor A, Kitzes R (1983) Bone magnesium, crystallinity index and state of body magnesium in subjects with senile osteoporosis, maturity-onset diabetes and women treated with contraceptive preparations. Magnesium 2:70–75

    Google Scholar 

  88. Dorup I, Flyvbjerg A, Everts ME, Clausen T (1991) Role of insulin-like growth factor-1 and growth hormone in growth inhibition induced by magnesium and zinc deficiencies. Brit J Nutr 66:505–521

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 1 R01 DK060545-01 from the National Institutes of Health and funds from the Orthopaedic Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Rude.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rude, R.K., Gruber, H.E., Norton, H.J. et al. Reduction of dietary magnesium by only 50% in the rat disrupts bone and mineral metabolism. Osteoporos Int 17, 1022–1032 (2006). https://doi.org/10.1007/s00198-006-0104-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-006-0104-3

Keywords

Navigation