Skip to main content
Log in

Could Combeite (Na2Ca2Si3O9) Serve as a Potential Biomaterial Platform that could Support the Growth of the Osteoblasts?

  • Review
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The review article aims to explore the significance of combeite in the field of biomaterials. This material is of great significance among silicate bioceramics. The paper provides an introduction to biomaterials and silicate materials, highlighting their relevance in the context of biocompatibility. The central focus is on combeite, encompassing its occurrence in volcanic rocks in conjunction with other minerals and its formation through post-thermal treatments in silicate materials. Combeite is recognized as a bioactive constituent in silicate biomaterials. The article also delves into the different methods employed to prepare the combeite phase, along with its applications within the realm of orthopaedic biomaterials. Additionally, a proposed roadmap for the production and utilization of combeite in orthopaedics is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article and not present in any repository.

References

  1. Paul D (Ed), Kevin EH, Dietmar WH, David WG, James KC (co-eds) Spector M (2015) The concept of biocompatibility” Vol. 1. P Ducheyne, “Biomaterials” Vol. 4. Comprehensive biomaterials. Vol. 1. Elsevier, Oxford

  2. Silvio J, Joao V, Rocha Y (2019) Requirements for selection / development of a biomaterial. Biomed J Sci Tech Res 14(3):1–6

    Google Scholar 

  3. Chen F-M, Liu X (2016) Advancing biomaterials of human origin for tissue engineering. Prog Polym Sci 53:86–168

    Article  PubMed  CAS  Google Scholar 

  4. bin Anwar Fadzil AF et al (2022) Role of surface quality on biocompatibility of implants-A review. Annals of 3D Printed Medicine 8:100082

  5. Živković JM, Ignjatović N, Najman S (Eds) (2023) Properties of hydroxyapatite-based biomaterials important for interactions with cells and tissues. In: Bioceramics, biomimetic and other compatible materials features for medical applications. Cham: Springer International Publishing, Switzerland, pp 115–135

  6. Agarwal R, García AJ (2015) Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 94:53–62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Saravanan L, Selvamurugan N (2016) Chitosan based biocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 93:1354–1365

    Article  PubMed  CAS  Google Scholar 

  8. Anthony JW, Bideaux RA, Bladh KW, Nichols MC (Eds) (2003) Handbook of mineralogy, mineralogical society of America, Chantilly, VA, USA

  9. Barry DJ, Smith J, Steele I (1989) Combeite (Na2.33Ca1. 74others0.12)Si3O9 from Oldoinyo Lengai, Tanzania. J Geol 97(3):365–372

    Article  Google Scholar 

  10. Keller J et al (2010) Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania: I. New magma composition during the 2007–2008 explosive eruptions. Bull Volcanol 72:893–912

    Article  Google Scholar 

  11. Mitchell RH, Barry Dawson J (2012) Carbonate–silicate immiscibility and extremely peralkaline silicate glasses from Nasira cone and recent eruptions at Oldoinyo Lengai Volcano, Tanzania. Lithos 152:40–46

    Article  CAS  Google Scholar 

  12. Andersen T, Elburg M, Erambert M (2012) Petrology of combeite-and götzenite-bearing nephelinite at Nyiragongo, Virunga Volcanic Province in the East African Rift. Lithos 152:105–121

    Article  CAS  Google Scholar 

  13. Fischer RX, Tillmanns E (1983) The crystal-structures of natural Na2Ca2Si3O9 from Mt. Shaheru (Zaire) and from the Mayener Feld (Eifel). Neues Jahrbuch fur Mineralogie-Monatshefte 2: 49–59

  14. Weidendorfer D, Schmidt MW, Mattsson H (2016) Fractional crystallization of Si-undersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites. Contrib Mineral Petrol 171(5):43

    Article  Google Scholar 

  15. Morey GW, Bowen NL (1925) The ternary system sodium metasilicate-calcium metasilicate-silica. J Soc Glass Technol 9(3):226–264

    CAS  Google Scholar 

  16. Wyckoff RWG, Morey GW (1926) X-ray diffraction measurements upon compounds in the system soda-lime-silica. Am J Sci s5-12(71):419–440

    Article  Google Scholar 

  17. Morey GW (1930) The devitrification of soda-lime-silica glasses 1. J Am Ceram Soc 13(10):683–713

    Article  CAS  Google Scholar 

  18. Sahama ThG, Hytönen K (1957) Götzenite and combeite, two new silicates from the Belgian Congo. Miner Mag J Miner Soc 31(238):503–510

    Article  CAS  Google Scholar 

  19. Köppen N, Padurow NN (1958) On the crystal structure of the compound Na2O.2CaO.3SiO2. Nat Sci 45:622–622

    Article  Google Scholar 

  20. Glasser LSD, Mileson JS (1968) Crystal data for Na2Ca2Si3O9. J Am Ceram Soc 51(1):55

    Google Scholar 

  21. Maki I, Sugimura T (1968) Metasilicates in ternary system Na2O-CaO-SiO2. J Ceram Assoc Japan 76:144–148

    Article  CAS  Google Scholar 

  22. Moir GK, Glasser FP (1974) Phase equilibria in the system Na2SiO3-CaSiO3. Phys Chem Glasses 15:6–11 

  23. Ohsato H, Takeuchi Y, Maki I (1986) Structure of Na4Ca4 [Si6O18]. Acta Crystallogr C 42(8):934–937

    Article  Google Scholar 

  24. Fischer RX, Tillmanns E (1987) Revised data for combeite, Na2Ca2Si3O9. Acta Crystallogr Sect C: Cryst Struc Comm 43(9):1852–1854

    Article  Google Scholar 

  25. Ohsato H, Takeuchi Y, Maki I (1990) Structural study of the phase transition of Na4Ca4[Si6O18]. Acta Crystallogr B 46(2):125–131

    Article  Google Scholar 

  26. Hench LL (2006) The story of Bioglass®. J Mater Sci - Mater Med 17(11):967–978

    Article  PubMed  CAS  Google Scholar 

  27. Navarro M, Serra T (2016) Conrado Aparicio and Maria Pau Ginebra (Eds) Biomimetic mineralization of ceramics and glasses. Biomineralization and Biomaterials. Woodhead Publishing, Cambridge 315–338

  28. Ioku K et al (1991) (1991) Bioactive glass-ceramics prepared by hydrothermal hot-pressing. Nippon Kagaku Kaishi 10:1408–1412

    Article  Google Scholar 

  29. Filho OP, La Torre GP, Hench LL (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res 30(4):509–514

    Article  Google Scholar 

  30. Mastelaro VR et al (2000) Relationship between short-range order and ease of nucleation in Na2Ca2Si3O9, CaSiO3 and PbSiO3 glasses. J Non-Cryst Solids 262(1–3):191–199

    Article  CAS  Google Scholar 

  31. Schneider J et al (2000) 29Si MAS–NMR studies of Qn structural units in metasilicate glasses and their nucleating ability. J Non-Cryst Solids 273(1–3):8–18

    Article  CAS  Google Scholar 

  32. El-Ghannam A, Hamazawy E, Yehia A (2001) Effect of thermal treatment on bioactive glass microstructure, corrosion behaviour, ζ potential and protein adsorption. J Biomed Mater Res 55(3):387–395

    Article  PubMed  CAS  Google Scholar 

  33. Peitl O, Zanotto ED, Hench LL (2001) Highly bioactive P2O5–Na2O–CaO–SiO2 glass-ceramics. J Non-Cryst Solids 292(1–3):115–126

    Article  CAS  Google Scholar 

  34. Clupper DC et al (2002) Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid. Biomaterials 23(12):2599–2606

    Article  PubMed  CAS  Google Scholar 

  35. Clupper DC, Hench LL (2003) Crystallization kinetics of tape cast bioactive glass 45S5. J Non-Cryst Solids 318(1–2):43–48

    Article  CAS  Google Scholar 

  36. Clupper DC, Hench LL, Mecholsky JJ (2004) Strength and toughness of tape cast bioactive glass 45S5 following heat treatment. J Eur Ceram Soc 24(10–11):2929–2934

    Article  CAS  Google Scholar 

  37. Du R, Chang J (2004) Preparation and characterization of bioactive sol-gel-derived Na2Ca2Si3O9. J Mater Sci - Mater Med 15:1285–1289

    Article  PubMed  CAS  Google Scholar 

  38. Chen Q, Boccaccini AR (2006) Coupling mechanical competence and bioresorbability in Bioglass®-derived tissue engineering scaffolds. Adv Eng Mater 8(4):285–289

    Article  CAS  Google Scholar 

  39. Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425

    Article  PubMed  CAS  Google Scholar 

  40. Chen Q-Z et al (2010) A new sol–gel process for producing Na2O-containing bioactive glass ceramics. Acta Biomater 6(10):4143–4153

    Article  PubMed  CAS  Google Scholar 

  41. Leenakul W et al (2016) Effect of sintering temperature variations on fabrication of 45S5 bioactive glass-ceramics using rice husk as a source for silica. Mater Sci Eng: C 61:695–704

    Article  CAS  Google Scholar 

  42. Essien ER, Adams LA, Igbari FO (2016) Mechanical Properties and in-vitro Physico-chemical Reactivity of Gel-derived SiO2–Na2O–CaO–P2O5 Glass from Sand. J Chin Chem Soc 63(7):618–626

    Article  CAS  Google Scholar 

  43. Juraski ADC et al (2017) The in-vitro bioactivity, degradation and cytotoxicity of polymer-derived wollastonite-diopside glass-ceramics. Materials 10(4):425

    Article  PubMed  PubMed Central  Google Scholar 

  44. Balakumar S et al (2018) Decoration of 1-D nano bioactive glass on reduced graphene oxide sheets: Strategies and in-vitro bioactivity studies. Mater Sci Eng, C 90:85–94

    Article  Google Scholar 

  45. Karimi AZ, Rezabeigi E, Drew RA (2018) Crystallization behaviour of combeite in 45S5 Bioglass® via controlled heat treatment. J Non-Cryst Solids 502:176–183

    Article  Google Scholar 

  46. Fiume E et al (2019) Bread-derived bioactive porous scaffolds: An innovative and sustainable approach to bone tissue engineering. Molecules 24(16):2954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nawaz Q et al (2019) Bioactive glass based scaffolds incorporating gelatin/manganese doped mesoporous bioactive glass nanoparticle coating. Ceram Int 45(12):14608–14613

    Article  CAS  Google Scholar 

  48. Thomas A, Bera J (2019) Preparation and characterization of gelatin-bioactive glass ceramic scaffolds for bone tissue engineering. J Biomater Sci Polym Ed 30(7):561–579

    Article  PubMed  CAS  Google Scholar 

  49. Hasan L et al (2019) In-vitro and in-vivo evaluation of bioglass microspheres incorporated brushite cement for bone regeneration. Mater Sci Eng: C 103:109775

    Article  CAS  Google Scholar 

  50. Bargavi P et al (2020) Zirconia reinforced bio-active glass coating by spray pyrolysis: Structure, surface topography, in-vitro biological evaluation and antibacterial activities. Mater Today Commun 25:101253

    Article  CAS  Google Scholar 

  51. Durgalakshmi D et al (2020) Bioactivity and hemocompatibility of sol–gel bioactive glass synthesized under different catalytic conditions. New J Chem 44(48):21026–21037

    Article  CAS  Google Scholar 

  52. Amudha S et al (2020) Enhanced mechanical and biocompatible properties of strontium ions doped mesoporous bioactive glass. Compos B Eng 196:108099

    Article  CAS  Google Scholar 

  53. Shivalingam C, Purushothaman B, Subramanium B (2020) Thermal treatment stimulus on erythrocyte compatibility and hemostatic behaviour of one-dimensional bioactive nanostructures. J Biomed Mater Res, Part A 108(11):2277–2290

    Article  CAS  Google Scholar 

  54. Kumar V, Thakur IS (2020) Biodiesel production from transesterification of Serratia sp. ISTD04 lipids using immobilised lipase on biocomposite materials of biomineralized products of carbon dioxide sequestrating bacterium. Bioresour Technol 307:123193

    Article  PubMed  CAS  Google Scholar 

  55. Kumar M, Gnansounou E, Thakur IS (2020) Synthesis of bioactive material by sol–gel process utilizing polymorphic calcium carbonate precipitate and their direct and indirect in-vitro cytotoxicity analysis. Environ Technol Innov 18:100647

    Article  Google Scholar 

  56. Bargavi P et al (2020) Bioactive, degradable and multi-functional three-dimensional membranous scaffolds of bioglass and alginate composites for tissue regenerative applications. Biomater Sci 8(14):4003–4025

    Article  PubMed  CAS  Google Scholar 

  57. Suárez M et al (2020) Novel antimicrobial phosphate-free glass–ceramic scaffolds for bone tissue regeneration. Sci Rep 10(1):1–12

    Article  Google Scholar 

  58. Balakumar S, Anandkumar B, George RP (2020) Formation of bioactive nano hybrid thin films on anodized titanium via electrophoretic deposition intended for biomedical applications. Mater Today Commun 25:101666

    Article  Google Scholar 

  59. Gavinho SR et al (2021) Structural, thermal, morphological and dielectric investigations on 45S5 glass and glass-ceramics. J Non-Cryst Solids 562:120780

    Article  CAS  Google Scholar 

  60. Chitra S, Balakumar S (2021) Insight into the impingement of different sodium precursors on structural, biocompatible and hemostatic properties of bioactive materials. Mater Sci Eng, C 123:111959

    Article  Google Scholar 

  61. Thomas NG, Manoharan A, Anbarasu A (2021) Preclinical evaluation of sol-gel synthesized modulated 45S5-bioglass based biodegradable bone graft intended for alveolar bone regeneration. J Hard Tissue Biol 30(3):303–308

    Article  CAS  Google Scholar 

  62. Karan R et al (2021) Structure, properties and in-vitro response of SiO2-Na2O-CaO-P2O5 system based glass-ceramics after partial replacement of Na2O by Li2O. J Non-Cryst Solids 556:120554

    Article  CAS  Google Scholar 

  63. Bargavi P et al (2022) Drug infused Al2O3-bioactive glass coatings toward the cure of orthopaedic infection. Prog Biomater 11(1):79–94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Eldera SS et al (2022) Characterization, biocompatibility and in-vivo of nominal MnO2-containing wollastonite glass-ceramic. Nanotechnol Rev 11(1):2800–2813

    Article  CAS  Google Scholar 

  65. Draghici D-A et al (2022) Strontium-substituted bioactive glass-ceramic films for tissue engineering. Boletín de la Sociedad Española de Cerámica y Vidrio 61(3):184–190

    Article  CAS  Google Scholar 

  66. Palakurthy S, Abdul Azeem P, Venugopal Reddy K (2022) Sol–gel synthesis of soda lime silica-based bioceramics using biomass as renewable sources. J Korean Ceram Soc 59:76–85

    Article  CAS  Google Scholar 

  67. Kargozar S et al (2022) Osteogenic potential of magnesium (Mg)-doped multicomponent bioactive glass: in-vitro and in-vivo animal studies. Materials 15(1):318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Nasehi Gogajeh N et al (2023) In-vitro evaluation of manganese-containing glass-ceramic in quaternary SiO2-CaO-Na2O-P2O5 system. Adv Ceram Prog 9(1):8–14

  69. Karpukhina N, Hill RG, Law RV (2014) Crystallisation in oxide glasses–a tutorial review. Chem Soc Rev 43(7):2174–2186

    Article  PubMed  CAS  Google Scholar 

  70. Nawaz Q et al (2020) New insights into the crystallization process of sol-gel–derived 45S5 bioactive glass. J Am Ceram Soc 103(8):4234–4247

    Article  CAS  Google Scholar 

  71. West AR (2014) Synthesis, Processing and Fabrication Methods. Solid State Chemistry and Its Applications, 2nd ed. (Student), Wiley, pp. 191, 192 and 196

Download references

Acknowledgements

The authors are grateful to the Founder Chancellor of the Sri Sathya Sai Institute of Higher Learning, Bhagawan Sri Sathya Sai Baba for His continuous inspiration and support

Funding

This research received no specific grant from any funding agency in the public, commercial, or not for profit sectors. The authors have no relevant financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

Listed below are the contributions of all the authors to the manuscript titled, “Could combeite (Na2Ca2Si3O9) serve as a potential biomaterial platform that could support the growth of the osteoblasts?”. The names given below are final and the authors agree with the same.

Research design: Leader: Nishant Kumar Kolli, Contributor: Santanu Roy, Advisor: Swarup Kundu.

Acquisition, analysis or interpretation of data: Leader: Nishant Kumar Kolli, Contributor: Swarup Kundu, Advisor: Santanu Roy.

Drafting the paper or revising it critically: Leader: Nishant Kumar Kolli, Contributor: Santanu Roy, Advisor: Swarup Kundu.

Corresponding author

Correspondence to Santanu Roy.

Ethics declarations

This article was resultant of studying literature available on the web and databases like Scopus / Web of science. Wet lab experiments or protocols were NOT carried out in the process. No cells, biological entities, animals or human participants were involved. Therefore, ethics approval and consent to participate is not revenant in this case.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All co-authors have seen and agree with the contents of the manuscript. All authors have given explicit consent to submit and obtained consent from the responsible authorities at the institute/organization where the work has been carried out.

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolli, N.K., Kundu, S. & Roy, S. Could Combeite (Na2Ca2Si3O9) Serve as a Potential Biomaterial Platform that could Support the Growth of the Osteoblasts?. Silicon 15, 7219–7233 (2023). https://doi.org/10.1007/s12633-023-02579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02579-0

Keywords

Navigation