Skip to main content

Advertisement

Log in

Synthesis and characteristics of monticellite bioactive ceramic

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Mono-phase ceramics of monticellite (CaMgSiO4) were successfully synthesized by sintering sol–gel-derived monticellite powder compacts at 1,480 °C for 6 h. The mechanical properties and the coefficient of thermal expansion (CTE) of the monticellite ceramics were tested. In addition, the bioactivity in vitro of the monticellite ceramics was evaluated by investigating their bone-like apatite-formation ability in simulated body fluid (SBF), and the biocompatibility in vitro was detected by osteoblast adhesion and proliferation assay. The results showed that the bending strength, fracture toughness and Young’s modulus of the monticellite ceramics were about 159.7 MPa, 1.63 MPa m1/2 and 51 GPa, respectively. The CTE was 10.76 × 10−6 °C−1 and close to that of Ti-6Al-4V alloy (10.03 × 10−6 °C−1). Furthermore, the monticellite ceramics possessed bone-like apatite-formation ability in SBF and could release soluble ionic products to significantly stimulate cell growth and proliferation. In addition, osteoblasts adhered and spread well on the monticellite ceramics, which indicated good bioactivity and biocompatibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. M. OLIVEIRA, R. N. CORREIA and M. H. FERNANDES, Biomaterials 16 (1995) 849

    Article  CAS  Google Scholar 

  2. T. KOKUBO, S. ITOO, S. SAKKA and T. YAMAMURO, J. Mater. Sci. 21 (1986) 536

    Article  CAS  Google Scholar 

  3. T. NAKAMURA, T. YAMAMURO, S. HIGASHI, T. KOKUBO and S. ITOO, J. Biomed. Mater. Res. 19 (1985) 685

    Article  CAS  Google Scholar 

  4. C. T. WU, J. CHANG, J. Y. WANG, S. Y. NI and W. Y. ZHAI, Biomaterials 26 (2005) 2925

    Article  CAS  Google Scholar 

  5. T. NONAMI and S. TSUTSUMI, J. Mater. Sci.: Mater. M. 10 (1999) 475

    Article  CAS  Google Scholar 

  6. L. L. HENCH, J. Am. Ceram. Soc. 81 (1998) 1705

    Article  CAS  Google Scholar 

  7. T. KOKUBO, Biomaterials 12 (1991) 157

    Article  Google Scholar 

  8. M. JARCHO, J. F. KAY, K. I. GUMAER, R. H. DOREMUS and H. P. DROBECK, J. Bioeng. 1 (1977) 79

    CAS  Google Scholar 

  9. G. PASQUIER, B. FLAUTRE, M. C. BLARY, K. ANSELME and P. HARDOUIN, J. Mater. Sci.: Mater. M. 7 (1996) 683

    Article  CAS  Google Scholar 

  10. E. TKALCEC, M. SAUER, R. NONNINGER and H. SCHMIDT, J. Mater. Sci. 36 (2001) 5253

    Article  CAS  Google Scholar 

  11. S. J. DING, C. P. JU and J. H. CHERN LIN, J. Mater. Sci.: Mater. M. 11 (2000) 183

    Article  CAS  Google Scholar 

  12. R. GODLEY, D. STAROSVETSKY and I. GOTMAN, J. Mater. Sci.: Mater. M. 15 (2004) 1073

    Article  CAS  Google Scholar 

  13. P. SIRIPHANNON, Y. KAMESHIMA, A. YASUMORI, K. OKADAA and S. HAYASHI, J. Eur. Ceram. Soc. 22 (2002) 511

    Article  CAS  Google Scholar 

  14. X. Y. LIU, C. X. DING and P. K. CHU, Biomaterials 25 (2004) 1755

    Article  CAS  Google Scholar 

  15. C. T. WU, J. CHANG, S. Y. NI and J. Y. WANG, J. Biomed. Mater. Res. 76 (2006) 73

    Article  CAS  Google Scholar 

  16. I. D. XYNOS, A. J. EDGAR, L. D. BUTTERY, L. L. HENCH and J. M. POLAK, J. Biomed. Mater. Res. 55 (2001) 151

    Article  CAS  Google Scholar 

  17. J. E. GOUGH, I. NOTINGHER and L. L. HENCH, J. Biomed. Mater. Res. 68 (2004) 640

    Article  CAS  Google Scholar 

  18. I. D. XYNOS, A. J. EDGAR, L. D. BUTTERY, L. L. HENCH and J. M. POLAK, Biochem. Biophys. Res. Commun. 276 (2000) 461

    Article  CAS  Google Scholar 

  19. P. VALERIO, M. M. PEREIRA, A. M. GOES and M. F. LEITE, Biomaterials 25 (2004) 2941

    Article  CAS  Google Scholar 

  20. T. J. WEBSTER, C. ERGUN, R. H. DOREMUS and R. BIZIOS, J. Biomed. Mater. Res. 59 (2002) 312

    Article  CAS  Google Scholar 

  21. C. C. LIU, J. K. YEH and J. F. ALOIA, J. Bone Miner. Res. 3 (1988) 104

    Google Scholar 

  22. K. UEMATSU, M. TAKAGI, T. HONDA, N. UCHIDA and K. SAITO, J. Am. Ceram. Soc. 72 (1989) 1476

    Article  CAS  Google Scholar 

  23. M. S. PEERCY and J. D. BASS, Phys. Chem. Miner. 17 (1990) 431

    Article  CAS  Google Scholar 

  24. T. KOKUBO, J. Non-Cryst. Solids 120 (1990) 138

    Article  CAS  Google Scholar 

  25. Q. LIU, J. DING, F. K. MANTE, S. L. WUNDER and G. R. BARAN, Biomaterials 23 (2002) 3103

    CAS  Google Scholar 

  26. C. T. WU and J. CHANG, Mater. Lett. 58 (2004) 2415

    Article  CAS  Google Scholar 

  27. N. Y. IWATA, G. H. LEE, S. TSUNAKAWA, Y. TOKUOKA and N. KAWASHIMA, Colloid. Surface. B. 33 (2004) 1

    Article  CAS  Google Scholar 

  28. Z. R. GOU and J. CHANG, J. Eur. Ceram. Soc. 24 (2004) 93

    Article  CAS  Google Scholar 

  29. J. E. GOUGH, D. C. CLUPPER and L. L. HENCH, J. Biomed. Mater. Res. 69 (2004) 621

    Article  CAS  Google Scholar 

  30. P. JUIN, M. PELLETIER, L. OLIVER, K. TREMBLAIS, M. GREGOIRE, K. MEFLAH and F. M. VALLETTE, J. Biol. Chem. 270 (1995) 3203

    Article  Google Scholar 

Download references

Acknowledgment

Financial supports from the Fund for Excellent Young Teachers of the Education Ministry of China (2002123) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangfu Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, X., Ou, J., Kang, Y. et al. Synthesis and characteristics of monticellite bioactive ceramic. J Mater Sci: Mater Med 19, 1257–1263 (2008). https://doi.org/10.1007/s10856-007-3233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-007-3233-0

Keywords

Navigation