Skip to main content
Log in

Cauliflower Cu2ZnSnS4:Na film prepared by single-pot hydrothermal approach for photovoltaic application: impact of NaOH additive

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4:Na promising quaternary chalcogenide material was deposited using a single-step hydrothermal method via EDTA as a complex agent. Various NaOH additives were studied to see how they affected the crystallographic, microstructure, optical, and electrical properties. The formation of polycrystalline kesterite Cu2ZnSnS4:Na films with a preferred orientation along (112) plane was shown by X-ray diffraction (XRD) and Raman analyses. These analyses also revealed that the structure's properties vary with NaOH additive: single-phase Cu2ZnSnS4:Na was formed at higher NaOH value and the secondary phase was formed within CZTS at lower NaOH values. Surface morphology changes from flake-flower to cauliflower, according to field emission scanning electron microscopy. Also, EDS peaks confirm the presence of Cu, Zn, Sn, Na, and S. UV–visible analysis indicates that all samples had high and wide absorbance spectra with absorption coefficients greater than 104 cm−1 in the (200–1000) nm range. Additionally, a 1.5 eV band gap for the single-phase Cu2ZnSnS4:Na film was estimated. For single-phase Cu2ZnSnS4:Na, photoluminescence revealed a peak at 1.47 eV, the energy value is in close proximity to the optical band gap of the ideal compound Cu2ZnSnS4:Na.The Hall measurement indicates the pure sample has p-type conductivity with a charge carrier concentration of 6 × 1017 cm−3. The resistivity of pure CZTS:Na and mobility were 1 Ω.cm and 10.4 cm2.Vs−1. Finally, the configuration of Mo foil/MoO3/CZTS:Na /Zn0.35Cd0.65S/ZnO/Al was used to produce a heterojunction solar cell. Under 100 mW/cm2, an open circuit voltage of (0.415) V, a short circuit current density of (14.3) mA cm-2, a fill factor of (38%), and the effectiveness of photovoltaic cells of (2.26%) were achieved.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Yussuf ST, Nwambaekwe KC, Ramoroka ME, Iwuoha EI (2023) Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells. Materials Today Sustainability 21:10028

    Article  Google Scholar 

  2. Ghosh S, Yasmin S, Ferdous J, Saha BB (2022) Numerical analysis of a CZTS solar cell with MoS2 as a buffer layer and graphene as a transparent conducting oxide layer for enhanced cell performance. Micromachines 13(8):1249

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chauhan P, Agarwal S, Srivastava V, Hossain MK, Pandey R, Madan J, Lohia P, Dwivedi DK, Amami M (2023) Kesterite CZTS based thin film solar cell: generation, recombination, and performance analysis. J Phys Chem Solids 183:111631

    Article  CAS  Google Scholar 

  4. Kumar A (2021) Efficiency enhancement of CZTS solar cells using structural engineering. Superlattices Microstruct 153:106872

    Article  CAS  Google Scholar 

  5. Demir ÇK (2021) The investigation of the corrosion behavior of CZTS thin films prepared via electrodeposition. Mater Sci Semicond Process 123:105553

    Article  CAS  Google Scholar 

  6. Xu J, Shang S, Yang J, Liu J, Jiang S (2021) Effect of sodium-doping on the performance of CZTS absorb layer: single and bifacial sodium-incorporation method. Sol Energy 221:476–482. https://doi.org/10.1016/j.solener.2021.04.063

    Article  CAS  Google Scholar 

  7. Henry J, Mohanraj K, Sivakumar G (2017) Effect of pH-induced on the photosensitivity of non-toxic Cu2ZnSnS4 thin film by chemical bath deposition. Int J Light Electron Opt 141:139–145. https://doi.org/10.1016/j.ijleo.2017.03.121

    Article  CAS  Google Scholar 

  8. Kumar YBK, Babu GS, Bhaskar PU, Raja VS (2009) Effect of starting-solution pH on the growth of Cu 2ZnSnS 4 thin films deposited by spray pyrolysis. Phys Status Solidi Appl Mater Sci 206(7):1525–1530. https://doi.org/10.1002/pssa.200824424

    Article  CAS  Google Scholar 

  9. Aslan F, Göktaş A, Tumbul A (2016) Influence of pH on structural, optical and electrical properties of solution processed Cu2ZnSnS4 thin film absorbers. Mater Sci Semicond Process 43:139–143. https://doi.org/10.1016/j.mssp.2015.12.011

    Article  CAS  Google Scholar 

  10. Ma G, Minegishi T, Yokoyama D, Kubota J, Domen K (2011) Photoelectrochemical hydrogen production on Cu2ZnSnS 4/Mo-mesh thin-film electrodes prepared by electroplating. Chem Phys Lett 501(4–6):619–622. https://doi.org/10.1016/j.cplett.2010.11.081

    Article  CAS  Google Scholar 

  11. Zhang H, Cheng S, Yu J, Lai Y, Zhou H, Jia H (2016) Effects of pH value in the electrolyte on the properties of Cu2ZnSnS4 thin film fabricated by single step co-electrodeposition. ECS J Solid State Sci Technol 5(9):P521–P525. https://doi.org/10.1149/2.0241609jss

    Article  CAS  Google Scholar 

  12. Deokate RJ, Kate RS, Bulakhe SC (2019) Physical and optical properties of sprayed Cu 2 ZnSnS 4 (CZTS) thin film: effect of Cu concentration. J Mater Sci Mater Electron 30(4):3530–3538. https://doi.org/10.1007/s10854-018-00630-0

    Article  CAS  Google Scholar 

  13. Al-Jawad SMH, Ismail MM, Ghazi SF (2021) Characteristics of diluted magnetic semiconductor based on Mn-doped TiO2 nanorod array films. J Solid State Electrochem 25(2):435–443. https://doi.org/10.1007/s10008-020-04823-8

    Article  CAS  Google Scholar 

  14. Camara SM, Wang L, Zhang X (2013) Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application. Nanotechnology. https://doi.org/10.1088/0957-4484/24/49/495401

    Article  PubMed  Google Scholar 

  15. Sawant JP, Kale RB (2020) Surfactant mediated TiO2 photoanodes and Cu2ZnSnS4 counter electrodes for high efficient dye sensitized solar cells. Mater Lett 265:127407. https://doi.org/10.1016/j.matlet.2020.127407

    Article  CAS  Google Scholar 

  16. Liu J, Luo F, Wei A, Liu Z, Zhao Y (2015) In-situ growth of Cu2ZnSnS4 nanospheres thin film on transparent conducting glass and its application in dye-sensitized solar cells. Mater Lett 141:228–230. https://doi.org/10.1016/j.matlet.2014.11.105

    Article  CAS  Google Scholar 

  17. Patil SS, Mane RM, Mali SS, Hong CK, Bhosale PN (2020) Facile designing and assessment of photovoltaic performance of hydrothermally grown kesterite Cu2ZnSnS4 thin films: Influence of deposition time. Sol Energy 201:102–115. https://doi.org/10.1016/j.solener.2020.02.089

    Article  CAS  Google Scholar 

  18. Suryawanshi M, Shin SW, Bae WR, Gurav K, Kang MG, Agawane G, Patil P, Yun JH, Lee JY, Moholkar A, Kim JH (2014) Kesterite CZTS nanocrystals: PH-dependent synthesis. Phys Status Solidi Appl Mater Sci 211(7):1531–1534. https://doi.org/10.1002/pssa.201330384

    Article  CAS  Google Scholar 

  19. Agasti A, Mallick S, Bhargava P (2018) Electrolyte pH dependent controlled growth of co-electrodeposited CZT films for application in CZTS based thin film solar cells. J Mater Sci Mater Electron 29(5):4065–4074. https://doi.org/10.1007/s10854-017-8350-z

    Article  CAS  Google Scholar 

  20. Paraye A, Sani R, Ramachandran M, Selvam NV (2018) Effect of pH and sulfur precursor concentration on electrochemically deposited CZTS thin films using glycine as the complexing agent. Appl Surf Sci 435:1249–1256. https://doi.org/10.1016/j.apsusc.2017.11.210

    Article  CAS  Google Scholar 

  21. Shafi MA, Khan L, Ullah S, Bouich A, Ullah H, Mari B (2022) Synthesis of CZTS kesterite by pH adjustment in order to improve the performance of CZTS thin film for photovoltaic applications. Micro Nanostruct 164:107185. https://doi.org/10.1016/j.spmi.2022.107185

    Article  CAS  Google Scholar 

  22. Tosun BS, Pettit C, Campbell SA, Aydil ES (2012) Structure and compositions of ZnXCd1-xS films synthesised throug chemical bath deposition. ACS Appl Mater Interfaces 4:3676–3684

    Article  PubMed  CAS  Google Scholar 

  23. Chandramohan R, Vijayan TA, Arumugam S, Ramaligam HB, Dahnasekaran V, Sundaram K, Mahalingam (2011) Effect of heat treatment on microstructural and optical properties of CBD grown Al-doped ZnO thin films. Mater Sci Eng B 176(2):152–156. https://doi.org/10.1016/j.mseb.2010.10.017

    Article  CAS  Google Scholar 

  24. Bouzida S, Battas M, Laghfour Z, Sekkat Z, Slaoui A, Abd-Lefdil M, Regragui M (2016) Properties of Cu 2 ZnSnS 4 films elaborated by modified spray process. In: 2016 International Renewable and Sustainable Energy Conference (IRSEC), pp 179–181. IEEE

  25. Al-Jawad SMH, Salman ON, Yousif NA (2018) Influence of titanium tetrachloride concentration and multiple growth cycles of TiO2 nanorod on photoanode performance in dye sensitized solar cell. Photon Nanostruct Fundam Appl 31:81–88

    Article  Google Scholar 

  26. Al-Jawad SMH, Elttayf AK, Saber AS (2017) Influence of annealing temperature on the characteristics of nanocrystailine SnO2 thin films prodused by sol-gel and chemical bath deposition for gas sensorapplication. Surf Rev Lett 24(7):1750140. https://doi.org/10.1142/S0218625X17501049

    Article  CAS  Google Scholar 

  27. Shin SW, Han JH, Park CY, Kim S, Park YC, Agawane GL, Moholkar AV, Yun JH (2012) A facile and low cost synthesis of earth abundant element Cu 2ZnSnS 4 (CZTS) nanocrystals: Effect of Cu concentrations. J Alloys Compd 541:192–197. https://doi.org/10.1016/j.jallcom.2012.06.086

    Article  CAS  Google Scholar 

  28. Kim C, Hong S (2019) Band gap shift of Cu2ZnSnS4 thin film by residual stress. J Alloys Compd 799:247–255. https://doi.org/10.1016/j.jallcom.2019.05.290

    Article  CAS  Google Scholar 

  29. Kumar GA, Reddy MR, Reddy KN (2012) Effect of annealing on ZnO thin films grown on quartz substrate by RF magnetron sputtering. In: Journal of Physics: Conference Series 2012 (vol 365, No. 1, p 012031). IOP Publishing

  30. Shaikh RAG, More SA, Bisen GG, Ghosh SS (2020) Study the properties of solution processable CZTS thin films induced by annealing treatment: study of annealing time. Semiconductors 54(9):1011–1015. https://doi.org/10.1134/S1063782620090110

    Article  Google Scholar 

  31. Huang Y, Li G, Fan Q, Zhang M, Lan Q, Fan X, Zhou Z, Zhang C (2016) Facile solution deposition of Cu 2 ZnSnS 4 (CZTS) nano-worm films on FTO substrates and its photoelectrochemical property. Appl Surf Sci 364:148–155. https://doi.org/10.1016/j.apsusc.2015.12.065

    Article  CAS  Google Scholar 

  32. Chandel T, Thakur V, Halaszova S, Prochazka M, Haska D, Velic D, Poolla R (2018) Growth and properties of sprayed CZTS thin films. J Electron Mater 47(9):5477–5487. https://doi.org/10.1007/s11664-018-6433-0

    Article  CAS  Google Scholar 

  33. Espinoza IE, Kuwabara YM, López MO (2017) Advances on the synthesis of solution-processed Cu 2 ZnSnS 4 thin films. In: 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp 1–4. IEEE. https://doi.org/10.1109/ICEEE.2017.8108907

  34. Covei M, Bogatu C, Perniu D, Cisse S, Duta A (2018) Comparative study of the electrical properties of CZTS-TiO2 and CZTS-ZnO heterojunctions for PV applications. In: 2018 International Semiconductor Conference (CAS), pp 311–314. IEEE. https://doi.org/10.1109/SMICND.2018.8539820

  35. Zhou J, You L, Li S, Yang Y (2012) Preparation and characterization of Cu 2ZnSnS 4 microparticles via a facile solution route. Mater Lett 81:248–250. https://doi.org/10.1016/j.matlet.2012.05.023

    Article  CAS  Google Scholar 

  36. Yazici S, Olgar MA, Aka FG, Cantas A, Kurt M, Aygun G, Tarhan E, Yanmaz E, Ozyus L (2015) Growth of Cu2ZnSnS4 absorber layer on flexible metallic substrates for thin film solar cell applications. Thin Solid Films 589:563–573. https://doi.org/10.1016/j.tsf.2015.06.028

    Article  CAS  Google Scholar 

  37. Guan H, Shen H, Wang W (2017) Fabrication of Cu2ZnSnS4 thin films by simple solution method using citric acid as complexing agent. J Mater Sci Mater Electron 28(19):14424–14429. https://doi.org/10.1007/s10854-017-7303-x

    Article  CAS  Google Scholar 

  38. Chen S, Walsh A, Gong XG, Wei SH (2013) Classification of lattice defects in the kesterite Cu2ZnSnS 4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv Mater 25(11):1522–1539. https://doi.org/10.1002/adma.201203146

    Article  PubMed  CAS  Google Scholar 

  39. Liu C, Li Z, Zhang Z (2013) MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro- supercapacitors. Sci Technol Adv Mater. https://doi.org/10.1088/1468-6996/14/6/065005

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gao J, Perkins CL, Luther JM, Hanna MC, Chen H, Semonin OE, Nazik AJ, Ellingson RJ, Gread MC (2011) n-Type Transition Metal Oxide as a Hole Extraction Layer in PbS Quantum Dot Solar Cells Jianbo. Nano Lett 11:3263–3266

    Article  PubMed  CAS  Google Scholar 

  41. Liu J, Xue Y, Gao Y, Yu D, Durstock M, Dai L (2012) Hole and electron extraction layers based on graphene oxide derivatives for high-performance bulk heterojunction solar cells. Adv Mater 24(17):2228–2233. https://doi.org/10.1002/adma.201104945

    Article  PubMed  CAS  Google Scholar 

  42. Lampande R, Kim GW, Boizot J, Kim YJ, Pode R, Kwon JH (2013) A highly efficient transition metal oxide layer for hole extraction and transport in inverted polymer bulk heterojunction solar cells. J Mater Chem A 1(23):6895–6900. https://doi.org/10.1039/c3ta10863e

    Article  CAS  Google Scholar 

  43. Yang KY, Sim JH, Jeon B, Son DH, Kim DH, Sung SJ, Hwng D, Soug S, Khadka D-B, Kim J, Kang JK (2014) Effects of Na and MoS2 on Cu2ZnSnS4 thin-film solar cell. Prog Photovolt: Res Appl 23(7):862–873

    Article  Google Scholar 

  44. Siek M, Kandere-Grzybowska K, Grzybowski BA (2020) Mixed-charge, pH-responsive nanoparticles for selective interactions with cells, organelles, and bacteria. Acc Mater Res 1(3):188–200. https://doi.org/10.1021/accountsmr.0c00041

    Article  CAS  Google Scholar 

  45. Boubatra M, Azizi A, Schmerber G, Dinia A (2012) The influence of pH electrolyte on the electrochemical deposition and properties of nickel thin films. Ionics (Kiel) 18(4):425–432. https://doi.org/10.1007/s11581-011-0642-3

    Article  CAS  Google Scholar 

  46. Kumar S, Jeon KC, Kang TW, Seth R, Panwar S, Shinde SK, Waghamode DP, Saratale G, Choubey RK (2019) Variation in chemical bath pH and the corresponding precursor concentration for optimizing the optical, structural and morphological properties of ZnO thin films. J Mater Sci Mater Electron 30(19):17747–17758. https://doi.org/10.1007/s10854-019-02125-y

    Article  CAS  Google Scholar 

  47. Chen S, Wang LW, Walsh A, Gong XG, Wei SH (2012) Abundance of CuZn+ SnZn and 2CuZn +Sn Zn defect clusters in kesterite solar cells. Appl Phys Lett 101(22):1–5. https://doi.org/10.1063/1.4768215

    Article  CAS  Google Scholar 

  48. Suarez H, Correa JM, Cruz SD, Otalora CA, Hurtado M, Gordillo G (2013) Synthesis and study of properties of CZTS thin films grown using a novel solution-based chemical route. In: 2013 IEEE 39th photovoltaic specialists conference (PVSC), pp 2585–2589. https://doi.org/10.1109/PVSC.2013.6745002

  49. Gordillo G, Calderón C, Bartolo-Pérez P (2014) XPS analysis and structural and morphological characterization of Cu 2 ZnSnS 4 thin films grown by sequential evaporation. Appl Surf Sci 305:506–514. https://doi.org/10.1016/j.apsusc.2014.03.124

    Article  CAS  Google Scholar 

  50. Patro B, Vijaylakshmi S, Sharma P (2018) Rapid microwave-assisted solvothermal synthesis of Cu2ZnSnS4 (CZTS) nanocrystals for low-cost thin film photovoltaic: investigation of synthesis parameters and morphology control. J Mater Sci Mater Electron 29(4):3370–3380. https://doi.org/10.1007/s10854-017-8272-9

    Article  CAS  Google Scholar 

  51. AL-Jawad SMH, Imran NJ, Aboud KH (2022) Synthesis and characterization of Mn:CdS nanoflower thin films prepared by hydrothermal method for photocatalytic activity. J Sol-Gel Sci Technol 100(3):423–439. https://doi.org/10.1007/s10971-021-05656-1

    Article  CAS  Google Scholar 

  52. Al-Jawad SMH, Mohammad MR, Imran NJ (2018) Effect of electrolyte solution on structural and optical properties of TiO2 grown by anodization technique for photoelectrocatalytic application. Surf Rev Lett 25(4):1–16. https://doi.org/10.1142/S0218625X18500786

    Article  CAS  Google Scholar 

  53. Al-Jawad SMH, Elttayf AK, Saber AS (2017) Studying structural, opticle, electrical, and sensing properties of nanocrystalline SnO2: Cu films prepared by sol- gel method for co-gas sensor application at low temperature. Surf Rev Lett 24(8):1–12. https://doi.org/10.1142/S0218625X17501104

    Article  CAS  Google Scholar 

  54. Al-Jawad SMH, Salman ON, Yousif NA (2019) influence of growth time on stractural, opticle and electrical properties of TiO 2 nanoroad arrays deposited by hydrothermal method. Surf Rev Lett 26(3):1–9. https://doi.org/10.1142/S0218625X1850155X

    Article  Google Scholar 

  55. AL-Jawad SMH, Ismail MM, Emad S (2017) Characterization of Mn, Cu, and (Mn, Cu) co-doped ZnS nanoparticles. J Opt Technol 84(7):80–85. https://doi.org/10.1364/JOT.84.000495

    Article  Google Scholar 

  56. Muhsen MM, Al SMH, Ali J (2022) Gum Arabic-modified Mn-doped CuS nanoprisms for cancer photothermal treatment. Chem Pap 79:6821–6838. https://doi.org/10.1007/s11696-022-02364-0

    Article  CAS  Google Scholar 

  57. Chaudhari JJ, Joshi US (2020) Fabrication of high-quality kesterite Cu2ZnSnS4 thin films deposited by an optimized sol–gel sulphurization technique for solar cells. J Mater Sci Mater Electron 31(17):14411–14420. https://doi.org/10.1007/s10854-020-04000-7

    Article  CAS  Google Scholar 

  58. Sekkati M, Tlemçani TS, Taibi M, Aazou S, Edfouf Z, El Moursli FC, Schmerber G, Sekkat Z, Dinia A, Slaoui A, Abd-Lefdil M (2017) Study of sprayed CZTS thin films containing various copper content. In: 2016 International Renewable and Sustainable Energy Conference (IRSEC) 2016, pp 107–109. IEEE. https://doi.org/10.1109/IRSEC.2016.7983951

  59. Haouanoh D, Zaïr R, Toubane M, Bensouici F, Samantilleke AP, TalaIghil RZ (2017) Study of Temperature and Concentration Effects for CZTS Layers using Spray Pyrolysis. In: 2017 International Renewable and Sustainable Energy Conference (IRSEC), pp 1–6. IEEE.https://doi.org/10.1109/IRSEC.2017.8477430.

  60. E. B. Benamar , T.S. Tlemcani, F.C.Elmoursli , M.Taibi, G. Schmerber, Z.Sekkat, A.Dinia , A. Slaoui and M.Abd-lefdil , “Effect of ITO and Mo coated glass substrates on electrodeposited Cu2ZnSnS4 thin films,” Proc. 2016 Int. Renew. Sustain. Energy Conf. IRSEC, pp. 79–82, 2017 doi: https://doi.org/10.1109/IRSEC.2016.7983888.

  61. Siebentritt S, Rey G, Finger A, Regesch D, Sendler J, Weiss TP, Bertram T (2016) What is the bandgap of kesterite? Sol Energy Mater Sol Cells 158:126–129. https://doi.org/10.1016/j.solmat.2015.10.017

    Article  CAS  Google Scholar 

  62. Mukherjee A, Mitra P (2017) Characterization of Sn doped ZnS thin films synthesized by CBD. Mater Res 20(2):430–435. https://doi.org/10.1590/1980-5373-MR-2016-0628

    Article  CAS  Google Scholar 

  63. Salomé PM, Fernandes PA, Leitão JP, Sousa MG, Teixeira JP, Da Cunha AF (2014) Secondary crystalline phases identification in Cu2ZnSnSe4 thin films: contributions from Raman scattering and photoluminescence. J Mater Sci 49(21):7425–7436. https://doi.org/10.1007/s10853-014-8446-2

    Article  CAS  Google Scholar 

  64. Ang H, Bosman M, Thamankar R, Faizal M, Yen SK, Hariharan A, Sudhaharan T, Selvan ST (2016) Highly luminescent heterostructured copper-doped zinc sulfide nanocrystals for application in cancer cell labeling. ChemPhysChem 17(16):2489–2495. https://doi.org/10.1002/cphc.201600415

    Article  PubMed  CAS  Google Scholar 

  65. Boutebakh FZ, Beloucif A, Aida MS, Cheetah A, Attaf N (2018) Zinc molarity effect on Cu2ZnSnS4 thin film properties prepared by spray pyrolysis. J Mater Sci Mater Electron 29(5):4089–4095. https://doi.org/10.1007/s10854-017-8353-9

    Article  CAS  Google Scholar 

  66. Ziti A, Hartiti B, Labrim H, Fadili S, Tchognia Nkuissi HJ, Ridah A, Tahri M, Thevenin P (2019) Effect of copper concentration on physical properties of CZTS thin films deposited by dip-coating technique. Appl Phys A 125:1–9. https://doi.org/10.1007/s00339-019-2513-0

    Article  CAS  Google Scholar 

  67. Tang A, Li Z, Wang F, Dou M, Mao W (2018) Preparation of Cu2ZnSnS4 thin films with high carrier concentration and high carrier mobility by optimized annealing. J Mater Sci Mater Electron 29:7613–7620. https://doi.org/10.1007/s10854-018-8753-5

    Article  CAS  Google Scholar 

  68. Ziabari AA, Zindanlou NM, Hassanzadeh J, Golshahi S, Khatibani AB (2020) Fabrication and study of single-phase high-hole-mobility CZTS thin films for PV solar cell applications: influence of stabilizer and thickness. J Alloys Compds. https://doi.org/10.1016/j.jallcom.2020.155741

    Article  Google Scholar 

  69. Sun W, Brozak M, Armstrong JC, Cui J (2013) Solar cell structures based on ZnO/CdS core-shell nanowire arrays embedded in Cu2ZnSnS4 light absorber. In: Conf. Rec. IEEE Photovolt. Spec. Conf., pp 2042–2046. https://doi.org/10.1109/PVSC.2013.6744874.

  70. Al-Zuhery AM, Al-Jawad SM, Al-Mousoi AK (2017) The effect of PbS thickness on the performance of CdS/PbS solar cell prepared by CSP. Optik (Stuttg) 130:666–672. https://doi.org/10.1016/j.ijleo.2016.10.120

    Article  CAS  Google Scholar 

  71. Yan C, Huang J, Sun K, Johnston S, Zhang Y, Sun H, Pu A, He M, Liu F, Eder K, Yang L, Cairney JM, Ekins-Daukes NJ, Hameiri Z, Stride JA, Chen S, Green MA, Hao X (2018) Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat Energy 3(9):764–772. https://doi.org/10.1038/s41560-018-0206-0

    Article  CAS  Google Scholar 

  72. Hao X, Sun K, Yan C, Liu F, Huang J, Pu A, Green M (2017) Large Voc improvement and 9.2% efficient pure sulfide Cu 2 ZnSnS 4 solar cells by heterojunction interface engineering. In: 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) 2016 (pp 2164–2168). IEEE.https://doi.org/10.1109/PVSC.2017.8366493.

  73. Heriche H, Chelvanathan P, Shahahmadi SA, Yousoff Y, Bais B, Rouabah Z, Tiong SK, Sopian K, Amin N (2019) Impact of dc-sputtered mo interlayer on the structural and compositional properties of Cu2ZnSnS4 (CZTS) thin films on flexible mo substrates. Chalcogenide Lett 16(12):595–602

    CAS  Google Scholar 

  74. Khalil MI, Lucotti A, Mereu RA, Binetti S, Hart JL, Taheri ML, Nabili L, Magagnin L (2021) CZTS thin film solar cells on flexible Molybdenum foil by electrodeposition-annealing route. J Appl Electrochem 51(2):209–218. https://doi.org/10.1007/s10800-020-01494-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the University of Technology and the School of Applied Sciences in Baghdad, Iraq, for conducting this study. ‬

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

NHA contributed to the investigation, writing—original draft, methodology, and formal analysis. SMHA-J contributed to writing—review and editing, administration, formal analysis, and investigation.

Corresponding author

Correspondence to Selma M. H. Al-Jawad.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allawi, N.H., Al-Jawad, S.M.H. Cauliflower Cu2ZnSnS4:Na film prepared by single-pot hydrothermal approach for photovoltaic application: impact of NaOH additive. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-023-02052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-023-02052-1

Keywords

Navigation