Skip to main content
Log in

Effect of copper concentration on physical properties of CZTS thin films deposited by dip-coating technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cu2ZnSnS4 (CZTS) thin films have been prepared via sol–gel method and deposited on ordinary glass substrates by dip-coating technique. The chemical composition of Cu/(Zn + Sn) ratio was varied between 0.85, 0.95 and 1.05 to study its effect on structural, optical, morphological, compositional and electrical properties of deposited films. The films were investigated using different techniques such as X-ray diffractometer (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), UV–vis spectrophotometer and four-point probe method. The X-ray diffraction showed the single kesterite phase with the preferential orientation along (112) plane. The crystallites size was found to be between 6.95 and 9.30 nm. Raman scattering measurements for CZTS films deposited at Cu/(Zn + Sn) equal to 0.85 and 1.05 were confirmed the presence of pure CZTS phase by the characteristic peak at 332 cm−1. The morphological properties show a dense surface morphology and the elemental composition indicates CZTS films with a near-stoichoimetric composition. The optical properties were calculated using transmittance and absorbance data in the wavelength range between 450 and 850 nm. The obtained band gap energy values were found to be between 1.41 and 1.47 eV. The electrical sheet resistance showed values between 0.68 and 1.07 × 103 Ω square−1. A best sheet resistance and favorable optical band gap make our dip-coated CZTS thin films suitable to be used as an absorber layer for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Appl. 19, 894–897 (2011)

    Google Scholar 

  2. M. Ganchev, L. Kaupmees, J. Iliyna, J. Raudoja, O. Volobujeva, H. Dikov, M. Altosaar, E. Mellikov, T. Varema, Energy Proc. 2, 65–70 (2010)

    Google Scholar 

  3. A. Walsh, S. Chen, S.-H. Wei, X.-G. Gong, Adv. Energy Mater. 2, 400–409 (2012)

    Google Scholar 

  4. C. Wadia, A.P. Alivisatos, D.M. Kammen, Environ. Sci. Technol. 43, 2072 (2009)

    ADS  Google Scholar 

  5. D.B. Mitzi, L.L. Kosbar, C.E. Murray, M. Copel, A. Afzali, Nature 428, 299 (2004)

    ADS  Google Scholar 

  6. D.B. Mitzi, M. Yuan, W. Liu, A.J. Kellock, S.J. Chey, V. Deline, A.G. Schrott, Adv. Mater. 20, 3657 (2008)

    Google Scholar 

  7. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol. Energy Mater. Sol. Cells 49, 407–414 (1997)

    Google Scholar 

  8. T. Kobayashi, K. Jimbo, K. Tsuchida, S. Shinoda, T. Oyanagi, H. Katagiri, Jpn. J. Appl. Phys. 44, 783–787 (2005)

    ADS  Google Scholar 

  9. H. Katagiri, Cu2ZnSnS4 thin film solar cells. Thin Solid Films 480–481, 426–432 (2005)

    ADS  Google Scholar 

  10. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express 1(2), 041201 (2008) (2pp)

    ADS  Google Scholar 

  11. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Thin Solid Films 517, 2455–2460 (2009)

    ADS  Google Scholar 

  12. T.K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater. 22, 156 (2010)

    Google Scholar 

  13. K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 93, 583 (2009)

    Google Scholar 

  14. Z. Zhou, Y. Wang, D. Xu, Y. Zhang, Sol. Energy Mater. Sol. Cells 94, 2042 (2010)

    Google Scholar 

  15. K. Tanaka, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 91, 1199 (2007)

    Google Scholar 

  16. Y. Miyamoto, K. Tanaka, M. Oonuki, N. Moritake, H. Uchiki, Jpn. J. Appl. Phys. 1, 596 (2008)

    ADS  Google Scholar 

  17. T.K. Todorov, M. Kita, J. Carda, P. Escribano, Thin Solid Films 517, 2541 (2009)

    ADS  Google Scholar 

  18. N. Moritake, Y. Fukui, M. Oonuki, K. Tanaka, H. Uchiki, Phys. Status Solidi (c) 6, 1233 (2009)

    ADS  Google Scholar 

  19. K. Tanaka, K. Moritake, M. Oonuki, H. Uchiki, Jpn. J. Appl. Phys. 47, 598 (2008)

    ADS  Google Scholar 

  20. H.J. Tchognia Nkuissi, B. Hartiti, Micro and Nano Technologies, chap. 44 (Elsevier, 2018), pp. 799–828

  21. K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater. 22(20), E156–E159 (2010)

    Google Scholar 

  22. D.A.R. Barkhouse, O. Gunawan, T. Gokmen, T.K. Todorov, D.B. Mitzi, Prog. Photovolt. Res. Appl. 20, 6–11 (2012)

    Google Scholar 

  23. T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 3, 34–38 (2013)

    Google Scholar 

  24. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1–5 (2014)

    Google Scholar 

  25. P. Prabeesh, P. Saritha, I. Packia Selvam, S.N. Potty, Mater. Res. Bull. 86, 295–301 (2017)

    Google Scholar 

  26. F. Aslan, A. Gökta, A. Tumbul, Mater. Sci. Semicond. Process. 43, 139–143 (2016)

    Google Scholar 

  27. M. Faustini, B. Louis, P.A. Albouy, M. Kuemmel, D. Grosso, J. Phys. Chem. C 114, 7637–7645 (2010)

    Google Scholar 

  28. S.A. Khalate, R.S. Kate, J.H. Kim, S.M. Pawar, R.J. Deokate, Superlattices Microstruct. 103, 335–342 (2017)

    ADS  Google Scholar 

  29. H. Park, Y. Hwan, B.-S. Bae, J. Sol-Gel. Sci. Technol. 65, 23–27 (2013)

    Google Scholar 

  30. R. Moreno, E.A. Ramirez, G.G. Guzmán, J. Phys. Conf. Ser. 687, 012041 (2016)

    Google Scholar 

  31. S. Kahraman, S. Çetinkaya, H.A. Çetinkara, H.S. Güder, Thin Solid Films 550, 36–39 (2014)

    ADS  Google Scholar 

  32. A.-S. Gadallah, M.M. El-Nahass, Cond. Matter Phys. 2013, 234546 (2013)

    Google Scholar 

  33. J. He, L. Sun, Y. Chen, J. Jiang, P. Yang, J. Chu, RSC Adv. 4, 43080 (2014)

    Google Scholar 

  34. S. Chen, X.G. Gong, A. Walsh, S.-H. Wei, Appl. Phys. Lett. 94, 041903 (2009)

    ADS  Google Scholar 

  35. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Thin Solid Films 517, 2519–2523 (2009)

    ADS  Google Scholar 

  36. Y.-L. Zhou, W.-H. Zhou, M. Li, Y.-F. Du, S.-X. Wu, J. Phys. Chem. C 115, 19632–19639 (2011)

    Google Scholar 

  37. Z. Guan, W. Luo, Z. Zou, Cryst Eng Commun. 16, 2929 (2014)

    Google Scholar 

  38. F. Biccari, R. Chierchia, M. Valentini, P. Mangiapane, E. Salza, C. Malerba, C.L. Azanza Ricardo, L. Mannarino, P. Scardi, A. Mittig, Energy Proc. 10, 187–191 (2011)

    Google Scholar 

  39. P.A. Fernandes, P.M.P. Salom, A.F. da Cunha, J. Alloys Compd. 509(28), 7600–7606 (2011)

    Google Scholar 

  40. P.R. Ghediya, T.K. Chaudhuri, J. Phys. D Appl. Phys. 48, 455109 (2015) (9pp)

    ADS  Google Scholar 

  41. T. Truong Mau, H. Kim, J. Ceram. Process. Res. 13(3), 301–304 (2012)

    Google Scholar 

  42. D. Seo, S. Lim, J. Mater. Sci. Mater. Electron. N.Y. 24(10), 3756–3763 (2013)

    Google Scholar 

  43. J.P. Leitão, N.M. Santos, P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, J.C. González, F.M. Matinaga, Thin Solid Films 519, 7390–7393 (2011)

    ADS  Google Scholar 

  44. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. 15, 627–637 (1966)

    ADS  Google Scholar 

  45. D. Seo, C. Kim, E. Oh, C.W. Hong, J.H. Kim, S. Lim, J Mater Sci. Mater Electron. 25(8), 3420–3426 (2014)

    Google Scholar 

  46. N. Vipul Kheraj, K.K. Patel, S.J. Patel, D.V. Shah, J. Cryst. Growth 362, 174–177 (2013)

    ADS  Google Scholar 

  47. T. Zdanowicz, T. Rodziewicz, M. Zabkowska-Waclawek, Sol. Energy Mater. Sol. Cells 87, 757–769 (2005)

    Google Scholar 

  48. G. Suresh Babu, Y.B. Kishore Kumar, P. Uday Bhaskar, S.R. Vanjari, Solar Energy Mater. Solar Cells 94, 221–226 (2010)

    Google Scholar 

  49. K. Maeda. K. Tanaka. Y. Fukui. H. Uchiki, Sol. Energy Mater. Sol. Cells 95, 2855 (2011)

    Google Scholar 

  50. S. Nakamura, T. Meada, T. Wada, Phys. Status Solid C 6, 1261 (2009)

    Google Scholar 

  51. J. Paier, R. Asahi, A. Nagoya, G. Kresse, Phys. Rev. B 79, 115126 (2009)

    ADS  Google Scholar 

  52. M. Cao, Y. Shen, J. Cryst. Growth 318, 1117 (2011)

    ADS  Google Scholar 

  53. D. Seo, S. Lim, J. Mater. Sci. Mater. Electron. 24, 3756–3763 (2013)

    Google Scholar 

  54. R.R. Ddy, M. Rai Kumar, T.V.R. Rao, lirfrarcd Phys. 34(1), 9SW (1993)

    Google Scholar 

  55. S. Ahmad, M. Mohib-ul Haq, Iran. J. Phys. Res. 14(3), 89–93 (2014)

    Google Scholar 

  56. K.R. Nemade, S.A. Waghuley, Int. J. Metals 2014, 389416 (2014)

    Google Scholar 

  57. K. Sangwal, Kucharczyk “Relationship between density and refractive index of inorganic solids”. J. Phys. D: Appl. Phys. 20, 522 (1987) and W.

    ADS  Google Scholar 

  58. I.S. Babichuk, V.O. Yukhymchuk, M.O. Semenenko, N.I. Klyui, R. Caballero, O.M. Hreshchuk, I.S. Lemishko, I.V. Babichuk, V.O. Ganus, M. Leon, Semicond. Phys. Quantum Electron. Optoelectron. 17(3), 284–290 (2014)

    Google Scholar 

  59. R. Hosseinpour, M. Izadifard, M.E. Ghazi, B. Bahramian, J. Electr. Mater. 47(2), 1080–1090 (2018)

    ADS  Google Scholar 

  60. K. Punitha, R. Sivakumar, C. Sanjeeviraja, J. Appl. Phys. 115, 113512 (2014)

    ADS  Google Scholar 

  61. K. Sharma, A.S. Al-Kabbi, G.S.S. Saini, S.K. Tripathi, Mater. Res. Bull. 47, 1400–1406 (2012)

    Google Scholar 

  62. H. Padma Kumar, S. Vidya, S. Saravana Kumar, C. Vijayakumar, S. Solomonb, J.K. Thomas, J. Asian Ceram. Soc. 3, 64–69 (2015)

    Google Scholar 

  63. E.A. Davis, N.F. Mott, J. Theor. Exp. Appl. Phys. 22(179), 903–922 (1970)

    Google Scholar 

  64. J. Henry, K. Mohanraj, G. Sivakumar, J. Asian Ceram. Soc. 4, 81–84 (2016)

    Google Scholar 

  65. W. Daranfed, M.S. Aida, N. Attaf, J. Bougdira, H. Rinnert, J. Alloy. Compd. 542, 22–27 (2012)

    Google Scholar 

  66. L. Majula, N.R. Mlyuka, M.E. Samiji, J. Korean Phys. Soc. 67(6), 1078–1081 (2015)

    ADS  Google Scholar 

Download references

Acknowledgements

Prof. Bouchaib HARTITI, Senior Associate at ICTP (The Abdus Salam International Centre for Theoretical Physics) is very grateful to ICTP for financial support. Technical support from LMOPS (University of Lorraine, France) and Kamal ABDERRAFI is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Ziti.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ziti, A., Hartiti, B., Labrim, H. et al. Effect of copper concentration on physical properties of CZTS thin films deposited by dip-coating technique. Appl. Phys. A 125, 218 (2019). https://doi.org/10.1007/s00339-019-2513-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2513-0

Navigation