Skip to main content
Log in

Electrolyte pH dependent controlled growth of co-electrodeposited CZT films for application in CZTS based thin film solar cells

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Understanding Cu–Zn–Sn co-electrodeposition is important from the view point of developing high quality CZTS (Cu2ZnSnS4) absorber layer for thin film solar cells. One of the major issue during electrodeposition is hydrogen evolution which can severely affect the growth of the depositing film. In the present study, the hydrogen evolution is controlled by systematically varying electrolyte pH during co-electrodeposition of Cu–Zn–Sn films. Cu–Zn–Sn metal precursor films were co-electrodeposited using electrolytic baths with pH varying from 4 to 8 and conditions for obtaining dense and stoichiometric Cu–Zn–Sn films were evaluated. Films electrodeposited with electrolyte pH of 6, 7 and 8 produced dense and continuous electrodeposited films in contrast to those deposited using electrolyte pH of 4 and 5. Films deposited with different electrolyte pH were sulphurized in Argon atmosphere and their physical characterization was carried out in order to find out conditions to obtain a dense and compact CZTS film having phase purity with appropriate stoichiometry resulting in a band gap of 1.45 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. I. Puigdomenech, Hydra/Medusa Chemical Equilibrium Database and Plotting Software 2010 (KTH Royal Institute of Technology).

References

  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovolta. Res. Appl 23, 1 (2015)

    Article  Google Scholar 

  2. K. Ito, T. Nakazawa, Jpn. J. Appl. Phys. 27, 2094 (1988)

    Article  Google Scholar 

  3. H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Appl. Phys. Express 1, 412011 (2008)

    Article  Google Scholar 

  4. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovolta. Res. Appl. 21, 72 (2013)

    Article  Google Scholar 

  5. A.V. Moholkar, S.S. Shinde, A.R. Babar, K.U. Sim, Y. bin Kwon, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, Sol. Energy 85, 1354 (2011)

    Article  Google Scholar 

  6. T.K. Todorov, K.B. Reuter, D.B. Mitzi, Adv. Mater. 22, E156 (2010)

    Article  Google Scholar 

  7. J. Ge, J. Jiang, P. Yang, C. Peng, Z. Huang, S. Zuo, L. Yang, J. Chu, Sol. Energy Mater. Sol. Cells 125, 20 (2014)

    Article  Google Scholar 

  8. K.V. Gurav, S.M. Pawar, S.W. Shin, M.P. Suryawanshi, G.L. Agawane, P.S. Patil, J.H. Moon, J.H. Yun, J.H. Kim, Appl. Surf. Sci. 283, 74 (2013)

    Article  Google Scholar 

  9. A.K. Singh, A. Shrivastava, M. Neergat, K.R. Balasubramaniam, Sol. Energy 155, 627 (2017)

    Article  Google Scholar 

  10. J. Tao, J. Liu, J. He, K. Zhang, J. Jiang, L. Sun, P. Yang, J. Chu, RSC Adv. 4, 23977 (2014)

    Article  Google Scholar 

  11. A.E. Rakhshani, P.H. Tharayil, S. Thomas, J. Mater. Sci.: Mater. Electron. 28, 12326 (2017)

    Google Scholar 

  12. X. He, H. Shen, J. Pi, C. Zhang, Y. Hao, J. Mater. Sci.: Mater. Electron. 24, 4578 (2013)

    Google Scholar 

  13. K.V. Gurav, J.H. Yun, S.M. Pawar, S.W. Shin, M.P. Suryawanshi, Y.K. Kim, G.L. Agawane, P.S. Patil, J.H. Kim, Mater. Lett. 108, 316 (2013)

    Article  Google Scholar 

  14. D. Colombara, A. Crossay, L. Vauche, S. Jaime, M. Arasimowicz, P.P. Grand, P.J. Dale, Phys. Status Solidi 212, 88 (2015)

    Article  Google Scholar 

  15. B.S. Pawar, S.M. Pawar, S.W. Shin, D.S. Choi, C.J. Park, S.S. Kolekar, J.H. Kim, Appl. Surf. Sci. 257, 1786 (2010)

    Article  Google Scholar 

  16. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, A.S. Mohamed, N.K. Allam, J. Electroanal. Chem. 735, 129 (2014)

    Article  Google Scholar 

  17. J. Iljina, R. Zhang, M. Ganchev, T. Raadik, O. Volobujeva, M. Altosaar, R. Traksmaa, E. Mellikov, Thin Solid Films 537, 85 (2013)

    Article  Google Scholar 

  18. C. Gougaud, D. Rai, S. Delbos, E. Chassaing, D. Lincot, J. Electrochem. Soc. 160, D485 (2013)

    Article  Google Scholar 

  19. B. Ananthoju, F.J. Sonia, A. Kushwaha, D. Bahadur, N.V. Medhekar, M. Aslam, Electrochim. Acta 137, 154 (2014)

    Article  Google Scholar 

  20. S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, Adv. Energy Mater. (2011). https://doi.org/10.1002/aenm.201100526

    Google Scholar 

  21. S.M. Pawar, B.S. Pawar, A.V. Moholkar, D.S. Choi, J.H. Yun, J.H. Moon, S.S. Kolekar, J.H. Kim, Electrochim. Acta 55, 4057 (2010)

    Article  Google Scholar 

  22. K. Cheng, J. Meng, X. Wang, Y. Huang, J. Liu, M. Xue, Z. Du, Mater. Chem. Phys. 163, 24 (2015)

    Article  Google Scholar 

  23. R. Juskenas, S. Kanapeckaite, V. Karpavic, Z. Mockus, V. Pakstas, A. Selskiene, R. Giraitis, G. Niaura, Sol. Energy Mater. Sol. Cells 101, 277 (2012)

    Article  Google Scholar 

  24. H. Jin, C. Park, Y. Park, Y. Kim, S. Park, J. Choi, J.-H. Lee, J. Korean Phys. Soc 69, 1450 (2016)

    Article  Google Scholar 

  25. H. Zhang, S. Cheng, J. Yu, Y. Lai, H. Zhou, H. Jia, ECS J. Solid State Sci. Technol. 5, P521 (2016)

    Article  Google Scholar 

  26. G. Heidari, S.M. Mousavi Khoie, M.E. Abrishami, M. Javanbakht, J. Mater. Sci.: Mater. Electron 26, 1969 (2015)

    Google Scholar 

  27. S. Omanovic, M. Metikos-Hukovic, Thin Solid Films 458, 52 (2004)

    Article  Google Scholar 

  28. A. Ritscher, J. Just, O. Dolotko, S. Schorr, M. Lerch, J. Alloys Compd. 670, 289 (2016)

    Article  Google Scholar 

  29. K. Rawat, P.K. Shishodia, Adv. Powder Technol. 28, 611 (2017)

    Article  Google Scholar 

  30. T.K. Chaudhuri, D. Tiwari, Sol. Energy Mater. Sol. Cells 101, 46 (2012)

    Article  Google Scholar 

  31. M. Valdes, M. Modibedi, M. Mathe, T. Hillie, M. Vazquez, Electrochim. Acta 128, 393 (2014)

    Article  Google Scholar 

  32. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Adv. Energy Mater. 4, 1 (2014)

    Article  Google Scholar 

  33. S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, Adv. Energy Mater. 2, 253 (2012)

    Article  Google Scholar 

  34. Y. Cui, S. Zuo, J. Jiang, S. Yuan, J. Chu, Sol. Energy Mater. Sol. Cells 95, 2136 (2011)

    Article  Google Scholar 

  35. S.G. Lee, J. Kim, H.S. Woo, Y. Jo, A.I. Inamdar, S.M. Pawar, H.S. Kim, W. Jung, H.S. Im, Curr. Appl. Phys. 14, 254 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge SAIF, IIT Bombay for providing access to characterization facilities. We also acknowledge Solar Energy Institute for India and the United States (SERIIUS) and National Centre for Photovoltaic Research and Education (NCPRE) for their financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag Bhargava.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 327 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agasti, A., Mallick, S. & Bhargava, P. Electrolyte pH dependent controlled growth of co-electrodeposited CZT films for application in CZTS based thin film solar cells. J Mater Sci: Mater Electron 29, 4065–4074 (2018). https://doi.org/10.1007/s10854-017-8350-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8350-z

Navigation