Skip to main content
Log in

Physical and optical properties of sprayed Cu2ZnSnS4 (CZTS) thin film: effect of Cu concentration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The crystallographic microstructural and optical properties of CZTS thin film have been investigated with influence of copper concentration in spray solution. The X-ray and Raman study carried out to the prepared CZTS thin films and attained pure kesterite phase. The results of microstructural properties such as crystallite size, d-spacing, microstrain, texture coefficient and standard deviation investigated. The prepared CZTS thin film shows very high optical absorption of the order of 105 cm−1 in the visible region and the optical band gap energy varied between 1.45 and 1.47 eV. This optical band gap tuning is most applicable for solar cells. By using the Wemple–DiDomenico (WDD) single oscillator model, the optical parameters were calculated such as single oscillator energy (E0), dispersion energy (Ed), static refractive index (n0), etc. Large values of optical conductivity (σ) give the promise to the solar cell application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Waida, A. Alivisatos, D. Kammen, Material availability expands the opportunity for large-scale photovoltaic development. Environ. Sci. Technol. 43, 2072–2077 (2009)

    Article  Google Scholar 

  2. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 42). Prog. Photovolt. 21, 827–837 (2013)

    Article  Google Scholar 

  3. G. Larramona, S. Bourdais, A. Jacob, C. Chone, T. Muto, Y. Cuccaro, B. Delatouche, C. Moisan, D. Pere, G. Dennler, 8.6% Efficient CZTSSe solar cells sprayed from water–ethanol CZTS colloidal solutions. J. Phys. Chem. Lett. 5, 3763–3767 (2014)

    Article  Google Scholar 

  4. Q. Guo, S.J. Kim, M. Kar, W.N. Shafarman, R.W. Birkmire, E.A. Stach, R. Agrawal, H.W. Hillhouse, Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells. Nano Lett. 8, 2982–2987 (2008)

    Article  Google Scholar 

  5. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Development of CZTS-based thin film solar cells. Thin Solid Films 517, 2455–2460 (2009)

    Article  Google Scholar 

  6. J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Björkman, Chemical insights into the instability of Cu2ZnSnS4 films during annealing. Chem. Mater. 23, 4625–4633 (2011)

    Article  Google Scholar 

  7. T. Washio, T. Shinji, S. Tajima, T. Fukano, T. Motohiro, K. Jimbo, H. Katagiri, 6% Efficiency Cu2ZnSnS4-based thin film solar cells using oxide precursors by open atmosphere type CVD. J. Mater. Chem. 22, 4021–4024 (2012)

    Article  Google Scholar 

  8. N. Kunihiko Tanaka, H. Moritake, Uchiki, Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors. Sol. Energy Mater. Sol. Cells 91, 1199–1201 (2007)

    Article  Google Scholar 

  9. K. Woo, Y. Kim, J. Moon, A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells. Energy Environ. Sci. 5, 5340–5345 (2012)

    Article  Google Scholar 

  10. H. Zhou, H. Duan, W. Yang, Q. Chen, C. Hsu, W. Hsu, C. Chen, Y. Yang, Facile single-component precursor for Cu2ZnSnS4 with enhanced phase and composition controllability. Energy Environ. Sci. 7, 998–1005 (2014)

    Article  Google Scholar 

  11. S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2, 253–259 (2012)

    Article  Google Scholar 

  12. F. Jiang, S. Ikeda, T. Harada, M. Matsumura, Pure sulfide Cu2ZnSnS4 thin film solar cells fabricated by preheating an electrodeposited metallic stack. Adv. Energy Mater. 4, 1301381 (2014)

    Article  Google Scholar 

  13. S.A. Khalate, R.S. Kate, J.H. Kim, S.M. Pawar, R.J. Deokate, Effect of deposition temperature on the properties of Cu2ZnSnS4 (CZTS) thin films. Superlattices Microstruct. 103, 335–342 (2017)

    Article  Google Scholar 

  14. T.H. Nguyen, W. Septina, S. Fujikawa, F. Jiang, T. Harada, S. Ikeda, Cu2ZnSnS4 thin film solar cells with 5.8% of conversion efficiency obtained by a facile spray pyrolysis technique. RSC Adv. 5, 77565–77571 (2015)

    Article  Google Scholar 

  15. B. Dhruba, J.H. Khadka, Kim, Structural transition and band gap tuning of Cu2(Zn,Fe)SnS4 chalcogenide for photovoltaic application. J. Phys. Chem. C 118, 14227–14237 (2014)

    Article  Google Scholar 

  16. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, A.S. Mohamed, Dependence of copper concentration on the properties of Cu2ZnSnS4 thin films prepared by electrochemical method. Int. J. Electrochem. Sci. 8, 359–368 (2013)

    Google Scholar 

  17. S.M. Bhosale, M.P. Suryawanshi, J.H. Kim, A.V. Moholkar, Influence of copper concentration on sprayed CZTS thin films deposited at high temperature. Ceram. Int. 41(7), 8299–8304 (2015)

    Article  Google Scholar 

  18. Y.B.K. Kumar, G.S. Babu, P.U. Bhaskar, V.S. Raja, Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 93, 1230–1237 (2009)

    Article  Google Scholar 

  19. S.M. Camara, L. Wang, X. Zhang, Easy hydrothermal preparation of Cu2ZnSnS4 (CZTS) nanoparticles for solar cell application. Nanotechnology 24, 495401 (2013)

    Article  Google Scholar 

  20. M. Law, M.C. Beard, S. Choi, J.M. Luther, M.C. Hanna, A.J. Nozik, Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. Nano Lett. 8, 3904–3910 (2008)

    Article  Google Scholar 

  21. S.G. Choi, H.Y. Zhao, C. Persson, C.L. Perkins, A.L. Donohue, B. To, A.G. Norman, J. Li, I.L. Repins, Dielectric function spectra and critical-point energies of Cu2ZnSnSe4 from 0.5 to 9.0 eV. J. Appl. Phys. 111, 033506 (2012)

    Article  Google Scholar 

  22. JCPDS # 26-0575

  23. E. G.Turgut, S. F.Keskenler.Aydin, S.Dogan, S.Duman, S.Özcelik, B. Gürbulakand, B. Esen, Fabrication and characterization of Al/Cu2ZnSnS4/n-Si/Al heterojunction photodiodes. Phys. Status Solidi A 211, 580–586 (2014)

    Article  Google Scholar 

  24. A. Moses Ezhil Raj, K.C. Lalithambika, V.S. Vidhya, G. Rajagopal, A. Thayumanavan, M. Jayachandran, C. Sanjeeviraja, Optical properties of Er3+/Yb3+ codoped transparent PLZT ceramic. Phys. B: Condensed Matter 403, 44–49 (2008)

    Article  Google Scholar 

  25. J. He, L. Sun, K. Zhang, W. Wang, J. Jiang, Y. Chen, P. Yang, J. Chu, Effect of post-sulfurization on the composition, structure and optical properties of Cu2ZnSnS4 thin films deposited by sputtering from a single quaternary target. Appl. Surf. Sci. 264, 133–138 (2013)

    Article  Google Scholar 

  26. B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Palo Alto, 1956)

    Google Scholar 

  27. K.L. Chopra, T.F. Phenomena, Thin Flim Phenomena (McGraw-Hill, New York, 1969), p. 270

    Google Scholar 

  28. T.Massalski C.Bareet, Structure of Metals (Pergaron Press, Oxford, 1980), p. 1923

    Google Scholar 

  29. C. Agashe, M. Takwale, B. Marathe, V. Bhide, Structural properties of SnO2: F films deposited by spray pyrolysis. Solar Energy Mater 17, 99–117 (1988)

    Article  Google Scholar 

  30. S.A. Khalate, R.S. Kate, H.M. Pathan, R.J. Deokate, Structural and electrochemical properties of spray deposited molybdenum trioxide (α-MoO3) thin films. J. Solid State Electrochem. 21, 2737–2746 (2017)

    Article  Google Scholar 

  31. R.M. Valls, T.S. Lyubenova, I.C. Roures, L. Oliveira, D.F. Chiva, J.B. Carda Castelló, Easy and low-cost aqueous precipitation method to obtain Cu2ZnSn(S, Se)4 thin layers. Solar Energy Mater. Solar Cells 161, 432–438 (2017)

    Article  Google Scholar 

  32. D.E. Milovzorov, A.M. Ali, T. Inokuma, Y. Kurata, T. Suzuki, S. Hasegawa, Optical properties of silicon nanocrystallites in polycrystalline silicon films prepared at low temperature by plasmaenhanced chemical vapor deposition. Thin Solid Films 382, 47–55 (2001)

    Article  Google Scholar 

  33. T.M. Wang, S.K. Zheng, W.C. Hao, C. Wang, Studies on photocatalytic activity and transmittance spectra of TiO2 thin films prepared by r.f. Magnetron Sputtering Method. Surf. Coat. Technol. 155, 141–145 (2002)

    Article  Google Scholar 

  34. N.A. Bakr, Z.T. Khodair, S.A. Hassan, Effect of substrate temperature on structural and optical properties of Cu2ZnSnS4 (CZTS) films prepared by chemical spray pyrolysis method. Res. J. Chem. Sci. 5(10), 51–61 (2015)

    Google Scholar 

  35. P. Kireev, La Physique des semiconducteurs (Mir, Moscou, 1975)

    Google Scholar 

  36. B.A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H.W. Schock, Cu2ZnSnS4 thin film solar cells by fast coevaporation. Prog. Photovolt. Res. Appl. 19, 93–96 (2011)

    Article  Google Scholar 

  37. J.S. Seol, S.Y. Lee, J.C. Lee, H.D. Nam, K.H. Kim, Electrical and optical properties of Cu2ZnSnS4 thin films prepared by RF magnetron sputtering process. Sol. Energy Mater. Sol. Cells 75, 155–162 (2003)

    Article  Google Scholar 

  38. S.Y. Chen, A. Walsh, Y. Luo, J.H. Yang, X.G. Gong, S.H. Wei, Wurtzite-derived polytypes of kesterite and stannite quaternary chalcogenide semiconductors. Phys. Rev. B 82, 195203 (2010)

    Article  Google Scholar 

  39. F.J. Fan, L. Wu, M. Gong, G. Liu, Y.X. Wang, S.H. Yu, S. Chen, L.W. Wang, X.G. Gong, Composition- and band-gap-tunable synthesis of Wurtzite-derived Cu2ZnSn(S1–xSex)4 nanocrystals: theoretical and experimental insights. ACS Nano 7, 1454–1463 (2013)

    Article  Google Scholar 

  40. K.R. Nemade, S.A. Waghuley, Synthesis of MgO nanoparticles by solvent mixed spray pyrolysis technique for optical investigation. Int. J. Mater. (2014). https://doi.org/10.1155/2014/389416

    Google Scholar 

  41. R.R. Reddy, M. Ravi Kumar, T.V.R. Rao, Studies on the opto-electronic properties of alkali halides from optical electromagnetivities. Infrared Phys. 34(1), 95–97 (1993)

    Article  Google Scholar 

  42. N.A. Bakr, Characterization of a CdZnTe/CdTe heterostructure system prepared by Zn diffusion into a CdTe thin film. J. Cryst. Growth 235(1), 217–223 (2002)

    Article  Google Scholar 

  43. S.H. Wemple, M. DiDomenico, Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971)

    Article  Google Scholar 

  44. N.A. Subrahamanyam, A Textbook of Optics, 9th edn. (Brj Laboratory, India, 1977)

    Google Scholar 

  45. K.S. Usha, R. Sivakumar, C. Sanjeeviraja, Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J. Appl. Phys. 114, 123501 (2013)

    Article  Google Scholar 

  46. A. Paliwal, A. Sharma, M. Tomar, V. Gupta, Optical properties of WO3 thin films using surface plasmon resonance technique. J. Appl. Phys. 115, 043104 (2014)

    Article  Google Scholar 

  47. K. Punitha, R. Sivakumar, C. Sanjeeviraja, Pulsing frequency induced change in optical constants and dispersion energy parameters of WO3 films grown by pulsed direct current magnetron sputtering. J. Appl. Phys. 115, 2 (2014)

    Article  Google Scholar 

  48. C. Kittel, Introduction to Solid State Physics, 7th edn. (John Wiley & Sons Inc., Singapore, 1996), pp. 307–308

    Google Scholar 

  49. A. Goswami, Thin Film Fundamentals (New Age International (P) Ltd., New Delhi, 2006), p. 376

    Google Scholar 

  50. I.C. Ndukwe, Solution growth, characterization and applications of zinc sulphide thin films. Solar Energy Mater. Solar Cells 40, 123 (1996)

    Article  Google Scholar 

  51. B. Ouni, A. Boukhachem, S. Dabbous, A. Amlouk, K. Boubaker, M. Amlouk, Some transparent semi-conductor metal oxides: comparative investigations in terms of Wemple–DiDomenico parameters, mechanical performance and Amlouk–Boubaker opto-thermal expansivity. Mater. Sci. Semicond. Process. 13, 281–287 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are wishing thanks to the Science and Engineering Research Board, Department of Science and Technology (SERB/DST), New Delhi, India for their financial assistance through the fast track project (SB/FTP/PS-079/2014) titled “Fabrication of efficient Cu2ZnSnS4 (CZTS) thin film solar cells using economical Spray Pyrolysis”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Deokate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deokate, R.J., Kate, R.S. & Bulakhe, S.C. Physical and optical properties of sprayed Cu2ZnSnS4 (CZTS) thin film: effect of Cu concentration. J Mater Sci: Mater Electron 30, 3530–3538 (2019). https://doi.org/10.1007/s10854-018-00630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00630-0

Navigation