Skip to main content
Log in

Variation in chemical bath pH and the corresponding precursor concentration for optimizing the optical, structural and morphological properties of ZnO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, ZnO thin films were deposited by chemical bath deposition carried out by selective correlation of varying (i) pH values at fixed concentration and (ii) concentration of the precursors at fixed pH. The selective correlations were done by using the characterization tools like X-ray diffraction, scanning electron microscopy, transmittance, refractive index, dielectric constant, Fourier-transform infrared spectroscopy and IV measurements. Transmittance was found to increase from 57 to 87% on varying the pH from basic side (10.8) to acidic side (pH 6.8) with a blue shift in band gap. The nature and morphology of the deposited films were found to be dependent on pH as well as concentration. Acidic pH 5.0 was found to be most suitable for deposition of highly transparent film with low absorption coefficient, refractive index and dielectric constant. On the other hand, nearly complete coverage of the substrate and high purity was observed in the ZnO thin films which was deposited by taking equal 100 mM concentration of Zn(NO3) and HMTA precursors at a fixed pH 5.0 as desired, sheet resistance was also found to increase on the acidic pH side which is useful in case of buffer layer solar cell application. These studies lay a foundation stone for understanding the optical and morphological parameters by selectively correlating the pH and concentration variation at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X. Wang, C.J. Summers, Z.L. Wang, Nano Lett. 4, 423 (2004)

    Article  CAS  Google Scholar 

  2. T.W. Hamann, A.B.F. Martinson, J.W. Elam, M.J. Pellin, J.T. Hupp, Adv. Mater. 20, 1560 (2008)

    Article  CAS  Google Scholar 

  3. H. Meruvu, M. Vangalapati, S.C. Chippada, S.R. Bammidi, Rasayan J. Chem. 4, 217 (2011)

    CAS  Google Scholar 

  4. N. Jones, B. Ray, K.T. Ranjit, A.C. Manna, FEMS Microbiol. Lett. 279, 71 (2008)

    Article  CAS  Google Scholar 

  5. X. Liu, X. Wu, H. Cao, R.P.H. Chang, J. Appl. Phys. 95, 3141 (2004)

    Article  CAS  Google Scholar 

  6. O. Lupan, L. Chow, G. Chai, L. Chernyak, O.L. Tirpak, H. Heinrich, Phys. Status Solidi A 205, 2673 (2008)

    Article  CAS  Google Scholar 

  7. L. Saad, M. Riad, J. Serb. Chem. Soc. 73, 997 (2008)

    Article  CAS  Google Scholar 

  8. J.A. Nikolaev, V.J. Rud’, J.V. Rud’, FTP 36 No 9, 1128 (2002). (In Russian)

  9. D. Hariskos, S. Spiering, M. Powalla, Thin Solid Films 480–481, 99 (2005)

    Article  Google Scholar 

  10. A.K. Radzimska, T. Jesionowski, Materials 7, 2833 (2014)

    Article  Google Scholar 

  11. Z. Fan, J.G. Lu, J. Nanosci. Nanotechnol. 5, 1561 (2005)

    Article  CAS  Google Scholar 

  12. L. Vayssieres, K. Keis, S.E. Lindquist, A. Hagfeldt, J. Phys. Chem. B 105, 3350 (2001)

    Article  CAS  Google Scholar 

  13. B.D. Yao, Y.F. Chan, N. Wang, Appl. Phys. Lett. 81, 757 (2002)

    Article  CAS  Google Scholar 

  14. H. Yuan, Y. Zhang, J. Cryst. Growth 263, 119 (2004)

    Article  CAS  Google Scholar 

  15. Y. Sun, G.M. Fuge, M.N.R. Ashfold, Chem. Phys. Lett. 396, 21 (2004)

    Article  CAS  Google Scholar 

  16. Y.W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D.P. Norton, F. Ren, P.H. Fleming, Appl. Phys. Lett. 81, 3046 (2002)

    Article  CAS  Google Scholar 

  17. W.T. Chiou, W.Y. Wu, J.M. Ting, Diam. Relat. Mater. 12, 1841 (2003)

    Article  CAS  Google Scholar 

  18. D. Lin, H. Wu, W. Pan, Adv. Mater. 19, 3968 (2007)

    Article  CAS  Google Scholar 

  19. D.S. Boyle, K. Govender, P. O’Brien, Chem. Commun. 1, 80 (2002)

    Article  Google Scholar 

  20. C.C. Lin, H.P. Chen, S.Y. Chen, Chem. Phys. Lett. 404, 30 (2005)

    Article  CAS  Google Scholar 

  21. D. Vernardou, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis, N. Katsarakis, Thin Solid Films 515, 8764 (2007)

    Article  CAS  Google Scholar 

  22. D. Polsongkram, P. Chamninok, S. Pukird, O. Lupan, Physica B 403, 3713 (2008)

    Article  CAS  Google Scholar 

  23. R.K. Choubey, D. Desai, S.N. Kale, S. Kumar, J. Mater. Sci.: Mater. Electron. 27, 7890 (2016)

    CAS  Google Scholar 

  24. R.K. Choubey, S. Kumar, C.W. Lan, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 025015 (2014)

    Google Scholar 

  25. Y.S. Lo, R.K. Choubey, W.C. Yu, W.T. Hsu, C.W. Lan, Thin Solid Films 520, 217 (2011)

    Article  CAS  Google Scholar 

  26. P. O’Brien, J. McAleese, J. Mater. Chem. 8, 2309 (1998)

    Article  Google Scholar 

  27. G. Hodes, Chemical Solution Deposition of Semiconductor Film (Dekker, New York, 2002)

    Book  Google Scholar 

  28. W.T. Hsu, S.S. Ro, H.R. Hsu, Y.C. Liu, Thin Solid Films 529, 293 (2013)

    Google Scholar 

  29. D. Byrne, E.M.C. Glyn, J. Cullin, M.O. Henry, Nanoscale 3, 1675 (2011)

    Article  CAS  Google Scholar 

  30. K. Govender, S.B. David, P.B. Kenway, P. O’Brien, J. Mater. Chem. 14, 2575 (2004)

    Article  CAS  Google Scholar 

  31. S. Xu, L.W. Zhong, Nano Res. 4, 1013 (2011)

    Article  CAS  Google Scholar 

  32. M.O. Lopez, A. Avila-Garcia, M.L. Albor-Aguilera, V.M. Sanchez-Resendiz, Mater. Res. Bull. 38, 1241 (2003)

    Article  Google Scholar 

  33. H. Tada, J. Am. Chem. Soc. 82, 255 (1960)

    Article  CAS  Google Scholar 

  34. T.A. Vijayan, R. Chandramohan, S. Valanarasu, J. Thirumalai, S. Venkateswaran, T. Mahalingam, S.R. Srikumar, Sci. Technol. Adv. Mater. 9, 035007 (2008)

    Article  Google Scholar 

  35. G.R. Patil, R.S. Gaikwad, M.B. Shelar, R.S. Mane, S.H. Han, B.N. Pawar, Arch. Phys. Res. 3, 401 (2012)

    CAS  Google Scholar 

  36. M. Shaban, M. Zayed, H. Hamdy, R. Soc. Chem. 7, 617 (2017)

    CAS  Google Scholar 

  37. K.V. Gurav, U.M. Patil, S.M. Pawar, J.H. Kim, C.D. Lokhande, J. Alloys Compd. 509, 7723 (2011)

    Article  CAS  Google Scholar 

  38. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

    Article  Google Scholar 

  39. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Heliyon 3, e00285 (2017)

    Article  CAS  Google Scholar 

  40. K. Nadarajah, C.Y. Chee, C.Y. Tan, J. Nanomater. (2013). https://doi.org/10.1155/2013/146382

    Article  Google Scholar 

  41. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  CAS  Google Scholar 

  42. E. Burstein, Phys. Rev. 25, 7826 (1982)

    Article  Google Scholar 

  43. D.D.O. Eya, A.J. Ekpunobi, C.E. Okeke, Pac. J. Sci. Technol. 6, 16 (2005)

    Google Scholar 

  44. P. Sharma, A. Dahshan, K.A. Aly, J. Alloys Compd. 616, 323 (2014)

    Article  CAS  Google Scholar 

  45. S. Sharma, C. Periasamy, P. Chakrabarti, Electron. Mater. Lett. 11, 1093 (2015)

    Article  CAS  Google Scholar 

  46. P.B. Taunk, R. Das, D.P. Bisen, R.K. Tamrakar, N. Rathor, Karbala Int. J. Mod. Sci. 1, 159 (2015)

    Article  Google Scholar 

  47. R. Wahab, Y.S. Kim, H.S. Shin, Mater. Trans. 50, 2092 (2009)

    Article  CAS  Google Scholar 

  48. G.M. Lampman, D.L. Pavia, G.S. Kriz, J.R. Vyvyan, Spectroscopy, 4th edn. (Cengage Learning India, New Delhi, 2010), p. 56

    Google Scholar 

  49. A. Sugunan, C.W. Hemant, M. Boman, J. Dutta, J. Sol-Gel Sci. Technol. 39, 49 (2006)

    Article  CAS  Google Scholar 

  50. S. Xu, Semiconductor Nanomaterials for Flexible Technologies. 2010; 197

    Chapter  Google Scholar 

  51. W.J. Li, E.W. Shi, W.Z. Zhong, Z.W. Yin, J. Cryst. Growth 203, 186 (1999)

    Article  CAS  Google Scholar 

  52. L. Vayssieres, Adv. Semicond. Nanostruct. C. R. Chim. 9, 691 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Research Foundation of Korea (NRF) vide Korea government (MSIP) Nos. 2016R1A6A1A03012877, 2018R1D1A1B07051095 and 2018R1D1A1B07050237. Authors from MM University, Mullana are also thankful to the Department of Science and Technology (DST), New Delhi, India for supporting the part of this research work (vide Project No. SR/FTP/PS-69/2008), dated 15/1/2010. One of the Authors, Ravi Kant Choubey is thankful to the Council of Science & Technology, Lucknow, Uttar Pradesh, India for the financial support (Vide No. CST/4051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Kant Choubey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Jeon, H.C., Kang, T.W. et al. Variation in chemical bath pH and the corresponding precursor concentration for optimizing the optical, structural and morphological properties of ZnO thin films. J Mater Sci: Mater Electron 30, 17747–17758 (2019). https://doi.org/10.1007/s10854-019-02125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02125-y

Navigation