Skip to main content
Log in

Zinc molarity effect on Cu2ZnSnS4 thin film properties prepared by spray pyrolysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, Cu2ZnSnS4 (CZTS) thin films were deposited by spray pyrolysis, the effect of zinc molarity on films structural, optical and electrical properties was investigated. CZTS films were grown by pneumatic spray pyrolysis with various zinc salt molarities. The structural properties reveal that all prepared CZTS films have a kesterite structure with a preferential orientation along (112) plan with the presence of secondary phases. Film composition and structural property vary with Zn molarity: at relatively low Zn molarity CuS secondary phase is formed, while with increasing Zn molarity ZnS secondary phase is formed. The crystallite size increases from 25 to 125 nm with increasing Zn molarity. Films transmission spectra show low transmission in the visible range, whereas the band gaps varies slightly with Zn salt molarity, it lies between 1.3 and 1.37 eV. Hall Effect measurements were employed to determine the electrical properties of CZTS films. The films conductivity is a p type, it is reduced with increasing Zn molarity due to the reduction of free carriers concentration caused by carriers loss at ZnS/CZTS interface and the presence of the resistive ZnS phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K. Ito, T. Nakazawa, Electrical and optical properties of stannite-type quaternary semiconductor thin films. Jpn. J. Appl. Phys. 27, 2094 (1988)

    Article  Google Scholar 

  2. F. Liu, Y. Li, K. Zhang, B. Wang, C. Yan, Y. Lai. Z. Zhang, J. Li, Y. Liu, In situ growth of Cu2ZnSnS4 thin films by reactive magnetron co-sputtering. Sol. Energy Mater. Solar Cells 94, 2431 (2010)

    Article  Google Scholar 

  3. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4 (2014)

  4. S. Ahmed, K.B. Reuter, O. Gunawan, L. Guo, L.T. Romankiw, H. Deligianni, A high efficiency electrodeposited Cu2ZnSnS4 solar cell. Adv. Energy Mater. 2, 253 (2012)

    Article  Google Scholar 

  5. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961)

    Article  Google Scholar 

  6. J.J. Scragg, in Copper Zinc Tin Sulfide Thin Films for Photovoltaics (Springer, Berlin, 2011)

    Google Scholar 

  7. S.M. Bhosale, M.P. Suryawanshia, J.H. Kim, A.V. Moholkar, Influence of copper concentration on sprayed CZTS thin films deposited at high temperature. Ceram. Int. 41, 8299 (2015)

    Article  Google Scholar 

  8. T.K. Todorov, K.B. Reuter, D.B. Mitzi, High-efficiency solar cell with Earth-abundant liquid-processed absorber. Adv. Mater. 22, E156 (2010)

    Article  Google Scholar 

  9. C.P. Bjorkman, J. Scragg, H. Flammersberger, T. Kubart, M. Edoff, Influence of precursor sulfur content on film formation and compositional changes in Cu2ZnSnS4 films and solar cells. Sol. Energy Mater Solar Cells 98, 110 (2012)

    Article  Google Scholar 

  10. M.P. Suryawanshi, S.W. Shin, U.V. Ghorpade, K.V. Gurav, G.L. Agawane, C.W. Hong, J.H. Yun, P.S. Patil, J.H. Kim, A.V. Moholkar, A chemical approach for synthesis of photo electrochemically active Cu2ZnSnS 4 (CZTS) thin films. Solar Energy 110, 221 (2014)

    Article  Google Scholar 

  11. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovoltaics Res. Appl. 21, 72 (2013)

    Article  Google Scholar 

  12. S. Chen, X.G. Gong, A. Walsh, S. Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 021902 (2010)

    Article  Google Scholar 

  13. J. Zhang, L. Shao, Y. Fu, E. Xie, Cu2ZnSnS4 thin films prepared by sulfurization of ion beam sputtered precursor and their electrical and optical properties. Rare Met. 25, 315 (2006)

    Article  Google Scholar 

  14. K. Moriya, K. Tanaka, H. Uchiki, Fabrication of Cu2ZnSnS4 thin-film solar cell prepared by pulsed laser deposition. Jpn. J. Appl. Phys. 46, 5780 (2007)

    Article  Google Scholar 

  15. S.M. Pawar, A.V. Moholkar, I.K. Kim, S.W. Shin, J.H. Moon, J.I. Rhee, J.H. Kim, Effect of laser incident energy on the structural, morphological and optical properties of Cu2ZnSnS4 (CZTS) thin films. Curr. Appl. Phys. 10, 565 (2010)

    Article  Google Scholar 

  16. T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, Preparation of Cu2ZnSnS4 thin films by hybrid sputtering. J. Phys. Chem. Solids 66, 1978 (2005)

    Article  Google Scholar 

  17. K. Tanaka, N. Moritake, H. Uchiki, Preparation of Cu2ZnSnS4 thin films by sulfurizing sol–gel deposited precursors. Sol. Energy Mater Sol. Cells 91, 1199 (2007)

    Article  Google Scholar 

  18. S. Siebentritt, U. Rau eds., in Wide-Gap Chalcopyrites (Spinger, Berlin, 2006)

    Google Scholar 

  19. K. Moriya, K. Tanaka, H. Uchiki, Characterization of Cu2ZnSnS4 thin films prepared by photochemical Deposition. Jpn. J. Appl. Phys. 44, 715 (2005)

    Article  Google Scholar 

  20. N. Kamoun, H. Bouzouita, B. Rezig, Fabrication and characterization of Cu2ZnSnS44 thin films deposited by spray pyrolysis technique. Thin. Solid Films 515, 5949 (2007)

    Article  Google Scholar 

  21. Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V.S. Raja, Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films. Solar Energy Mater. Solar Cells 93, 1230 (2009)

    Article  Google Scholar 

  22. W. Daranfed, M.S. Aida, N. Attaf, J. Bougdira, H. Rinnert, Cu2ZnSnS4 thin films deposition by ultrasonic spray pyrolysis. J. Alloys Compd. 542, 2227 (2012)

    Article  Google Scholar 

  23. H. Afif, S.A. Mahmoud, A. Ashour, Structural study of ZnS thin films prepared by spray pyrolysis. Thin Solid Films 263, 248 (1995)

    Article  Google Scholar 

  24. N. Nakayama, K. Ito, Sprayed films of stannite Cu2ZnSnS4. Appl. Surf. Sci. 92, 171 (1996)

    Article  Google Scholar 

  25. J. Madara, P. Bombicz, M. Okuya, S. Kaneko, Thermal decomposition of thiourea complexes of Cu(I), Zn(II), and Sn(II) chlorides as precursors for the spray pyrolysis deposition of sulfide thin films”. Solid State Ionics 141–142, 439 (2001)

    Article  Google Scholar 

  26. I.D. Olekseyuk, I.V. Dudchak, L.V. Piskach, Phase equilibria in the Cu2S–ZnS–SnS2 system. J. Alloys Compd. 368, 135 (2004)

    Article  Google Scholar 

  27. S. Chen, J.H. Yang, X.G. Gong, A. Walsh, S.H. Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev. B 81, 245204 (2010)

    Article  Google Scholar 

  28. H. Yoo, J. Kim, Growth of Cu2ZnSnS4 thin films using sulfurization of stacked metallic films. Thin Solid Films 518, 6567 (2010)

    Article  Google Scholar 

  29. O.P. Singh, N. Muhunthan, K.S. Gour, R. Parmar, M. Dalai, P. Kulriya, S. Pillai, V.N. Singh, Effect of sputter deposited Zn precursor film thickness and annealing time on the properties of Cu2ZnSnS4 thin films deposited by sequential reactive sputtering of metal targets. Mater. Sci. Semicond. Process 52, 38 (2016)

    Article  Google Scholar 

  30. P.J. Dale, K. Hoenes, J.J. Scragg, S. Siebentritt, in 34th IEEE Photovoltaic Specialist Conference. (IEEE, Philadelphia, 2009), p. 1956

    Google Scholar 

  31. X. Fontané, L. Calvo-Barrio, V. Izquierdo-Roca, E. Saucedo, A. Pérez-Rodriguez, J.R. Morante, D.M. Berg, P.J. Dale, S. Siebentritt, In-depth resolved Raman scattering analysis for the identification of secondary phases: characterization of Cu2ZnSnS4 layers for solar cell applications. Appl. Phys. Lett. 98, 181905 (2011)

    Article  Google Scholar 

  32. J. Scragg, P. Dale, L. Peter, Synthesis and characterization of Cu2ZnSnS4 absorber layers by an electrodeposition-annealing route. Thin Solid Films 517, 2481 (2009)

    Article  Google Scholar 

  33. T. Todorov, M. Kita, J. Carda, P. Escribano, Cu2ZnSnS4 films deposited by a soft-chemistry method. Thin Solid Films 517, 2541 (2009)

    Article  Google Scholar 

  34. D.M. Berg, M. Arasimowicz, R.Djemour,L. Gütay, S. Siebentritt, S. Schorr, X. Fontané, V. Izquierdo-Roca, A. Pérez-Rodriguez, P.J. Dal, Discrimination and detection limits of secondary phases in Cu2ZnSnS4 using X-ray diffraction and Raman spectroscopy. Thin Solid Films 569, 113 (2014)

    Article  Google Scholar 

  35. L.A. Goodman, Liquid-crystal displays—electro-optic effects and addressing techniques. RCA Rev. 35, 613 (1974)

    Google Scholar 

  36. C. Steinhagen, M.G. Panthani, V. Akhavan, B. Goodfellow, B. Koo, B.A. Korgel, Synthesis of Cu2ZnSnS4 nanocrystals for use in low-cost photovoltaics. J. Am. Chem. Soc. 131, 12554 (2009)

    Article  Google Scholar 

  37. S. Chen, X.G. Gong, A. Walsh, S.-H. Wei, Crystal and electronic band structure of Cu2ZnSn X4 (X = S and Se) photovoltaic absorbers: first-principles insights. Appl. Phys. Lett. 94, 041903 (2009)

    Article  Google Scholar 

  38. C. Persson, Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 107, 053710 (2010)

    Article  Google Scholar 

  39. C. Malerba, C. Ricardo, M.Valentini,F. Biccari, M. Muller, L. Rebuffi, E. Esposito, P. Mangiapane, P. Scardi, A. Mittiga, Stoichiometry effect on Cu2ZnSnS4 thin films morphological and optical properties. J. Renew. Sust. Energy 6, 011404 (2014)

    Article  Google Scholar 

  40. S. Chen, A. Walsh, X. Gong, S. Wei, Classification of lattice defects in the Kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers. Adv. Mater. 25, 1522 (2013)

    Article  Google Scholar 

  41. S. Chen, L.-W. Wang, A. Walsh, X. Gong, S.-H. Wei, Abundance of CuZn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells. Appl. Phys. Lett. 101, 223901 (2012)

    Article  Google Scholar 

  42. S. Schorr, V. Riede, D. Spemann, T. Doering, Electronic band gap of Zn2x(CuIn)1 – xX2 solid solution series (X = S, Se, Te). J. Alloys Compd. 414, 26 (2006)

    Article  Google Scholar 

  43. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  Google Scholar 

  44. S. Kumar Swami, A. Kumar, V. Dutta, Deposition of kesterite Cu2ZnSnS4 (CZTS) thin films by spin coating Technique for solar cell application. Energy Procedia 33, 198 (2013)

    Article  Google Scholar 

  45. Z. Shadrokh, H. Eshghi, A. Yazdan, Mater. Sci. Semicond. Process 40, 752 (2015)

    Article  Google Scholar 

  46. T. Maeda, S. Nakamura, T. Wada, First principles calculations of defect formation in in-free photovoltaic semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4. Jpn. J. Appl. Phys. 50, 04DP07 (2011)

    Article  Google Scholar 

  47. S. Chen, X.G. Gong, A. Walsh, S.-H. Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 021902 (2010)

    Article  Google Scholar 

  48. A. Nagoya, R. Asahi, R. Wahl, G. Kresse, Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material. Phys. Rev. B, 81, 113202 (2010)

    Article  Google Scholar 

  49. J.M. Raulot, C. Domain, J.F. Guillemoles, Ab initio investigation of potential indium and gallium free chalcopyrite compounds for photovoltaic application. J. Phys. Chem. Solids, 66, 2019 (2005)

    Article  Google Scholar 

  50. D. Mitzi, O. Gunawan, T. Todorov, K. Wang, S. Guha, The path towards a high-performance solution-processed kesterite solar cell. Sol. Ener. Mater. Solar Cells, 95, 1421 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Aida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boutebakh, F.Z., Beloucif, A., Aida, M.S. et al. Zinc molarity effect on Cu2ZnSnS4 thin film properties prepared by spray pyrolysis. J Mater Sci: Mater Electron 29, 4089–4095 (2018). https://doi.org/10.1007/s10854-017-8353-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8353-9

Navigation