Skip to main content
Log in

Identification of QTLs for seed quality traits in rapeseed (Brassica napus L.) using recombinant inbred lines (RILs)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Rapeseed (Brassica napus L.) is the most important edible oilseed crop in China and the second most important globally after soybean. It provides edible vegetable oil for human consumption and proteins for the feed industry, and has recently gained increasing interest as a source of biodiesel. The improvement of seed quality traits for high protein, oil and oleic acid, and low erucic acid and glucosinolate content remains the most important breeding goal in B. napus. Mapping of quantitative trait loci (QTLs) underlying seed quality traits will allow us to enrich knowledge on these traits and improve the efficiency and precision of conventional rapeseed breeding via marker-assisted selection (MAS). In this study, a genetic linkage map comprising 181 markers (143 sequence-related amplified polymorphisms (SRAPs) and 38 simple-sequence repeats (SSRs)) and 19 linkage groups covering 1307.99 cM was constructed with 94 F7–8 recombinant inbred lines (RILs) derived from a cross between a high oil content line ‘827R’ and a low oil content line ‘Darmor_Sin’. A total of nine QTLs were identified (LOD > 2.5) on four chromosomal regions (LG1, LG10, LG11 and LG12) for seed quality traits: four for oil content (qOC-1, 2, 3, 4), two for protein content (qPC-1, 2), two for oleic acid content (qOAC-1, 2), and one for glucosinolate content (qGLC-1). The phenotypic variance explained by individual QTL was estimated as 7.70, 14.58, 16.00, and 23.11 % respectively for the four oil content QTLs; 13.16 and 14.81 % for the two protein content QTLs; 12.52 and 25.48 % for the two oleic acid content QTLs; and 47.71 % for the glucosinolate content QTL. The overall phenotypic variation explained by the identified QTLs was 61.39 % for oil content, 27.97 % for protein content, 38.00 % for oleic acid content and 47.71 % for glucosinolate content. Of the two QTLs identified for seed protein content, one (qPC-1) was tightly linked to a QTL for oil content (qOC-1) on LG1 and another one (qPC-2) was co-localized with a second QTL for seed oil content (qOC-2) on LG11. The two pairs of QTLs affected both traits with opposite additive effects confirming the negative correlation between oil and protein content in rapeseed. The present results will be of value for ongoing efforts to dissect the molecular basis of seed quality traits and practicing MAS in B. napus breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aherne FX, Bowland JP, Hardin RT, Christian RG (1976) Performance of myocardial and blood seral changes in pigs fed diets containing high or low erucic acid rapeseed oils. Can J Anim Sci 56(2):275–284

    Article  CAS  Google Scholar 

  • Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe TJ (1998) A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theor Appl Genet 96(2):177–186

    Article  CAS  Google Scholar 

  • Beare-Rogers JL, Nera EA, Heggtveit HA (1971) Cardiac lipid changes in rats fed oils containing long-chain fatty acids. Can Inst Food Technol J 4:120–124

    Article  CAS  Google Scholar 

  • Becker HC, Engqvist GM, Karlsson B (1995) Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theor Appl Genet 91(1):62–67

    Article  CAS  PubMed  Google Scholar 

  • Brown J, Brown AP, Davis JB, Erickson D (1997) Intergeneric hybridization between Sinapis alba and Brassica napus. Euphytica 93(2):163–168

    Article  Google Scholar 

  • Burns MJ, Barnes SR, Bowman JG, Clarke MH, Werner CP, Kearsey MJ (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) seed oil content and fatty acid composition. Heredity 90(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Bus A, Körber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123(8):1413–1423

    Article  PubMed  Google Scholar 

  • Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY, Chiquet J, Belcram H, Tong CB, Samans B, Corréa M, Silva CD, Just J, Falentin C, Koh CS, Clainche IL, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao MX, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Paslier MCL, Fan GG, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, DinhThi VH, Chalabi S, Hu Q, Fan CC, Tollenaere R, Lu YH, Battail C, Shen JX, Sidebottom CHD, Wang XF, Canaguier A, Chauveau A, Bérard A, Deniot G, Guan M, Liu ZS, Sun FM, Lim YP, Lyons E, Town CD, Bancroft I, Wang XW, Meng JL, Ma JX, Pires JC, King GJ, Brunel D, Delourme R, Renard R, Aury RM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou YM, Hua W, Sharpe AG, Paterson AH, Guan CY, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345(6199):950–953

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhang Y, Liu XP, Chen BY, Tu JX, Fu TD (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115(6):849–858

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Nelson MN, Ghamkhar K, Fu T, Cowling WA (2008) Divergent patterns of allelic diversity from similar origins: the case of oilseed rape (Brassica napus L.) in China and Australia. Genome 51(1):1–10

    Article  PubMed  Google Scholar 

  • Chen G, Geng JF, Rahman M, Liu XP, Tu JX, Fu TD, Li GY, McVetty PBE, Tahir M (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175(2):161–174

    Article  CAS  Google Scholar 

  • Chen S, Nelson MN, Chèvre AM, Jenczewski E, Li ZY, Mason AS, Meng JL, Plummer JA, Pradhan A, Siddique KHM, Snowdon RJ, Yan GJ, Zhou WJ, Cowling WA (2011) Trigenomic bridges for Brassica improvement. Crit Rev Plant Sci 30:524–547

    Article  CAS  Google Scholar 

  • Chen YB, Qi L, Zhang XY, Huang JX, Wang JB, Chen HC, Ni XY, Xu F, Dong YJ, Xu HM, Zhao JY (2013) Characterization of the quantitative trait locus OilA1 for oil content in Brassica napus. Theor Appl Genet 126(10):2499–2509

    Article  CAS  PubMed  Google Scholar 

  • Chevre AM, Eber F, Margale E, Kerlan MC, Primard C, Vedel F (1994) Comparison of somatic and sexual Brassica napusSinapis alba hybrids and their progeny by cytogenetic studies and molecular characterization. Genome 37(3):367–374

    Article  CAS  PubMed  Google Scholar 

  • Cloutier S, Cappadocia M, Landry BS (1995) Study of microspore-culture responsiveness in oilseed rape (Brassica napus L.) by comparative mapping of a F2 population and two microspore-derived populations. Theor Appl Genet 91(6–7):841–847

    CAS  PubMed  Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113(7):1331–1345

    Article  CAS  PubMed  Google Scholar 

  • Diers BW, Osborn TC (1994) Genetic diversity of oilseed Brassica napus germplasm based on restriction fragment length polymorphisms. Theor Appl Genet 88:662–668

    Article  CAS  PubMed  Google Scholar 

  • Downey RK, Craig BM (1964) Genetic control of fatty acid biosynthesis in rapeseed (Brassica napus L.). J Am Oil Chem Soc 41(7):475–478

    Article  CAS  Google Scholar 

  • Ecke W, Uzunova M, Weißleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977

    CAS  PubMed  Google Scholar 

  • Friedt W, Snowdon RJ (2010) Oilseed rape. In: Vollmann J, Istvan R (eds) Handbook of plant breeding, vol 4: oil crops breeding, vol 4. Springer Verlag, Dordrecht, pp 91–126

    Google Scholar 

  • Gomez-Campo C, Prakash S (1999) Origin and Domestication. In: Gomez-Campo C (ed) Biology of Brassica coenospecies. Elsevier, Amsterdam, pp 33–58

    Chapter  Google Scholar 

  • Grami B, Baker RJ, Stefansson BR (1977) Genetics of protein and oil content in summer rape. Heritability, number of effective factors, and correlations. Can J Plant Sci 57(3):937–943

    Article  CAS  Google Scholar 

  • Gül MK (2002) QTL-Kartierung und Analyse von QTL 9 Stickstoff Interaktionen beim Winterraps (Brassica napus L.). Ph.D. thesis, Uni Gottingen, Germany, pp 34–38   

  • Gül M, Becker HC, Ecke W (2003) QTL mapping and analysis of QTL × nitrogen interactions for protein and oil contents in Brassica napus L. In: Proceedings of the 11th international rapeseed congress, Copenhagen, pp 91–93

  • Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141(1):32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harper AL, Trick M, Higgins J, Fraser F, Clissold L, Wells R, Hattori C, Werner P, Bancroft I (2012) Associative transcriptomics of traits in the polyploid crop species Brassica napus. Nat Biotechnol 30(8):798–802

    Article  CAS  PubMed  Google Scholar 

  • Harvey BL, Downey RK (1963) The inheritance of erucic acid content in rapeseed (Brassica napus L.). Can J Plant Sci 44:104–111

    Article  Google Scholar 

  • Hasan M, Seyis F, Badani AG, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon RJ (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53(19):793–802

    Article  CAS  Google Scholar 

  • Hayward AC, Tollenaere R, Dalton-Morgan J, Batley J (2015) Molecular marker applications in plants. Methods Mol Biol 1245:13–27

    Article  CAS  PubMed  Google Scholar 

  • Howell PM, Sharpe AG, Lydiate DJ (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46(3):454–460

    Article  CAS  PubMed  Google Scholar 

  • Hu X, Sullivan-Gilbert M, Gupta M, Thompson SA (2006) Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and fad3 allele-specific markers in canola (Brassica napus L.). Theor Appl Genet 113(3):497–507

    Article  CAS  PubMed  Google Scholar 

  • Iniguez Luy FL, Federico ML (2011) The genetics of Brassica napus L. In: Bancroft I, Schmidt R (eds) Genetics and genomics of the Brassicaceae. Springer, New York, pp 291–322

    Chapter  Google Scholar 

  • Ji YT, Qu CQ, Cao BY (2007) An optimal method of DNA silver staining in polyacrylamide gels. Electrophoresis 28(8):1173–1175

    Article  CAS  PubMed  Google Scholar 

  • Jiang CC, Shi JQ, Li RY, Long Y, Wang H, Li DR, Zhao JY, Meng JL (2014) Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor Appl Genet 127(4):957–968

    Article  CAS  PubMed  Google Scholar 

  • Jourdren C, Barret P, Horvais R, Foisset N, Delourme R, Renard M (1996) Identification of RAPD markers linked to the loci controlling erucic acid level in rapeseed. Mol Breed 2(1):61–71

    Article  CAS  Google Scholar 

  • Larkan NJ, Lydiate DJ, Yu FQ, Rimmer SR, Borhan MH (2014) Co-localisation of the blackleg resistance genes Rlm2 and LepR3 on Brassica napus chromosome A10. BMC Plant Biol 14(1):387

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP) a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103(2–3):455–461

    Article  CAS  Google Scholar 

  • Li N, Shi JQ, Wang XF, Liu GH, Wang HZ (2014) A combined linkage and regional association mapping validation and fine mapping of two major pleiotropic QTLs for seed weight and silique length in rapeseed (Brassica napus L.). BMC Plant Biol 14:114

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin Z, He D, Zhang X, Nie Y, Guo X, Feng C, Stewart JM (2005) Linkage map construction and mapping QTL for cotton fibre quality using SRAP, SSR and RAPD. Plant Breed 124(2):180–187

    Article  CAS  Google Scholar 

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103(4):491–507

    Article  CAS  Google Scholar 

  • Long YM, Wang ZN, Sun ZD, Fernando D, McVetty PBE, Li GY (2011) Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus canola cultivar ‘Surpass 400’. Theor Appl Genet 122(6):1223–1231

    Article  PubMed  Google Scholar 

  • Lowe AJ, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108(6):1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Lu YH, Arnaud D, Belcram H, Falentin C, Rouault P, Piel N, Lucas MO, Just J, Renard M, Delourme R, Chalhoub B (2012) A dominant point mutation in a RINGv E3 ubiquitin ligase homoeologous gene leads to cleistogamy in Brassica napus. Plant Cell 24(12):4875–4891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood T, Rahman MH, Stringam GR, Yeh F, Good AG (2006) Identification of quantitative trait loci (QTL) for oil and protein contents and their relationships with other seed quality traits in Brassica juncea. Theor Appl Genet 113(7):1211–1220

    Article  CAS  PubMed  Google Scholar 

  • Matthäus B (2006) Utilization of high-oleic rapeseed oil for deep-fat frying of French fries compared to other commonly used edible oils. Eur J Lipid Sci Technol 108(3):200–211

    Article  Google Scholar 

  • Mei JQ, Fu Y, Qian LW, Xu XF, Li JN, Qian W (2011) Effectively widening the gene pool of oilseed rape (Brassica napus L.) by using Chinese B. rapa in a ‘virtual allopolyploid’ approach. Plant Breed 130(3):333–337

    Article  Google Scholar 

  • Metzger JO, Bornscheuer U (2006) Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification. Appl Microbiol Biotechnol 71(1):13–22

    Article  CAS  PubMed  Google Scholar 

  • Peng Q, Hu Y, Wei R, Zhang Y, Guan CY, Ruan Y, Liu CL (2010) Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell 29(4):317–325

    Article  CAS  Google Scholar 

  • Pinzi S, Garcia IL, Lopez-Gimenez FJ, Luque de Castro MD, Dorado G, Dorado MP (2009) The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuels 23(5):2325–2341

    Article  CAS  Google Scholar 

  • Piquemal J, Cinquin E, Couton F, Rondeau C, Seignoret E, Doucet I, Perret D, Villeger MJ, Vincourt P, Blanchard P (2005) Construction of an oilseed rape (Brassica napus L.) genetic map with SSR markers. Theor Appl Genet 111(8):1514–1523

    Article  CAS  PubMed  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114(1):67–80

    Article  CAS  PubMed  Google Scholar 

  • Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113(3):549–561

    Article  CAS  PubMed  Google Scholar 

  • Rana D, van den Boogaart T, O’Neill CM, Hynes L, Bent E, Macpherson L, Park JY, Lim YP, Bancroft L (2004) Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J 40(5):725–733

    Article  CAS  PubMed  Google Scholar 

  • Röbbelen G, Thies W (1980) Biosynthesis of seed oil and breeding for improved meal quality. In: Tsumoda S, Hinta K, Gomez-Campo C (eds) Brassica crops and wild allies: biology and breeding. Japan Scientific Societies Press, Tokyo, pp 285–299

    Google Scholar 

  • Si P, Mailer RJ, Galwey N, Turner DW (2003) Influence of genotype and environment on oil and protein concentration of Canola (Brassica napus L.) grow across southern Australia. Aust J Agric Res 54:397–407

    Article  Google Scholar 

  • Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I (2011) The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet 122(6):1075–1090

    Article  CAS  PubMed  Google Scholar 

  • Stefansson BR, Kondra ZP (1975) Tower summer rape. Can J Plant Sci 55:343–344

    Article  Google Scholar 

  • Sun ZD, Wang ZN, Tu JX, Zhang JF, Yu FQ, McVetty PBE, Li GY (2007) An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet 114(8):1305–1317

    Article  CAS  PubMed  Google Scholar 

  • Sun MY, Hua W, Liu J, Huang SM, Wang XF, Liu GH, Wang HZ (2012) Design of new genome- and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLoS ONE 7(10):e47037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The World Bank Report (2008) Global Economic Prospects 2008: technology diffusion in the developing world. World Bank Publications, Washington, pp 40–41

  • Thormann CE, Romero J, Mantet J, Osborn TC (1996) Mapping loci controlling the concentrations of erucic and linolenic acids in seed oil of Brassica napus L. Theor Appl Genet 93(1–2):282–286

    Article  CAS  PubMed  Google Scholar 

  • Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90(2):194–204

    Article  CAS  PubMed  Google Scholar 

  • Vles RO, Bijster GM, Timmer WG (1978) Nutritional evaluation of low-erucic acid rapeseed oils. Arch Toxicol Suppl 1:23–32

    Article  PubMed  Google Scholar 

  • Wang HZ (2004) Strategy for rapeseed genetic improvement in China in the coming fifteen years. Chin J Oil Crop Sci 26(2):98–101 (in Chinese with an English abstract)

    Google Scholar 

  • Wang YP, Zhao XX, Sonntag K, Wehling P, Snowdon RJ (2005) Behaviour of Sinapis alba chromosomes in a Brassica napus background revealed by genomic in situ hybridization. Chromosome Res 13(8):819–826

    Article  CAS  PubMed  Google Scholar 

  • Wang N, Wang YJ, Tian F, King GJ, Zhang CY, Long Y, Shi L, Meng JL (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180(4):751–765

    Article  CAS  PubMed  Google Scholar 

  • Wang XD, Wang H, Long Y, Li DR, Yin YT, Tian JH, Chen L, Liu LZ, Zhao WG, Zhao YJ, Yu LJ, Li MT (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS ONE 8(12):e80569

    Article  PubMed  PubMed Central  Google Scholar 

  • Warner K, Knowlton S (1997) Frying quality and oxidative stability of high-oleic corn oils. J Am Oil Chem Soc 74(10):1317–1322

    Article  CAS  Google Scholar 

  • Wittkop B, Snowdon RJ, Friedt W (2009) Status and perspectives of breeding for enhanced yield and quality of oilseed crops for Europe. Euphytica 170(1–2):131–140

    Article  Google Scholar 

  • Wu G, Wu YH, Xiao L, Li XD, Lu CM (2008) Zero erucic acid trait of rapeseed (Brassica napus L.) results from a deletion of four base pairs in the fatty acid elongase 1 gene. Theor Appl Genet 116(4):491–499

    Article  CAS  PubMed  Google Scholar 

  • Wu XL, Liu ZH, Hu ZH, Huang RZ (2014) BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed. J Integr Plant Biol 56(6):582–593

    Article  CAS  PubMed  Google Scholar 

  • Würschum T, Liu WX, Maurer HP, Abel S, Reif JC (2012) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124(1):153–161

    Article  PubMed  Google Scholar 

  • Xiao Y, Chen LL, Zou J, Tian ET, Xia W, Meng JL (2010) Development of a population for substantial new type Brassica napus diversified at both A/C genomes. Theor Appl Genet 121(6):1141–1150

    Article  PubMed  Google Scholar 

  • Yan XY, Li JN, Fu FY, Jin MY, Chen L, Liu KZ (2009) Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica 170(3):355–364

    Article  CAS  Google Scholar 

  • Yan XY, Li JN, Wang R, Jin MY, Chen L, Qian W, Wang XN, Liu LZ (2011) Mapping of QTLs controlling content of fatty acid components in rapeseed (Brassica napus L.). Genes Genomics 33(3):365–371

    Article  CAS  Google Scholar 

  • Yang QY, Fan CC, Guo ZH, Qin J, Wu JZ, Li QY, Fu TD, Zhou YM (2012a) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125(4):715–729

    Article  CAS  PubMed  Google Scholar 

  • Yang P, Shu C, Chen L, Xu JS, Wu JS, Liu KD (2012b) Identification of a major QTL for silique length and seed weight in oilseed rape (Brassica napus L.). Theor Appl Genet 125(2):285–296

    Article  PubMed  Google Scholar 

  • Yin Y, Wang HZ, Liao X (2009) Analysis and strategy for 2009 rapeseed industry development in China. Chin J Oil Crop Sci 31(2):259–262 (in Chinese with an English abstract)

    Google Scholar 

  • Zhang DD, Hua YP, Wang XC, Zhao H, Shi L, Xu FS (2014) A high-density genetic map identifies a novel major QTL for boron efficiency in oilseed rape (Brassica napus L.). PLoS ONE 9(11):e112089

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Meng J (2003) Detection of loci controlling seed glucosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breed 122:19–23

    Article  CAS  Google Scholar 

  • Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W (2005) Oil content in a European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype–environment interactions. Yi Chuan Xue Bao 32(9):969–978 (in Chinese with an English abstract)

    CAS  PubMed  Google Scholar 

  • Zhao JY, Becker HC, Zhang DQ, Zhang YF, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113(1):33–38

    Article  CAS  PubMed  Google Scholar 

  • Zhao JY, Dimov Z, Becker HC, Ecke W, Möllers C (2008) Mapping QTL controlling fatty acid composition in a doubled haploid rapeseed population segregating for oil content. Mol Breed 21(1):115–125

    Article  CAS  Google Scholar 

  • Zhao JY, Huang JX, Chen F, Xu F, Ni XY, Xu HM, Wang YL, Jiang CC, Wang H, Xu AX, Huang RZ, Li DR, Meng JL (2012a) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124(2):407–421

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZK, Wu LK, Nian FZ, Ding GD, Shi TX, Zhang DD, Shi L, Xu FS, Meng JL (2012b) Dissecting quantitative trait loci for boron efficiency across multiple environments in Brassica napus. PLoS ONE 7(9):e45215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Zhu JL, Huang SM, Tian ET, Xiao Y, Fu DH, Tu JX, Fu TD, Meng JL (2010a) Broadening the avenue of intersubgenomic heterosis in oilseed Brassica. Theor Appl Genet 120(2):283–290

    Article  PubMed  Google Scholar 

  • Zou J, Jiang CC, Cao ZY, Li RY, Long Y, Chen S, Meng JL (2010b) Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping. Genome 53(11):908–916

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Key Projects of Science and Technology of Guizhou Province (QKH-NY(2007)-3006, QKH-NY(2011)-3021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hai Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 148 kb)

Supplementary material 2 (DOC 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, XQ., Huang, T., Hou, GZ. et al. Identification of QTLs for seed quality traits in rapeseed (Brassica napus L.) using recombinant inbred lines (RILs). Euphytica 210, 1–16 (2016). https://doi.org/10.1007/s10681-016-1675-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-016-1675-5

Keywords

Navigation