Skip to main content
Log in

Characterization of the quantitative trait locus OilA1 for oil content in Brassica napus

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Increasing seed oil content has become one of the most important breeding criteria in rapeseed (Brassica napus). However, oil content is a complex quantitative trait. QTL mapping in a double haploid population (SG population) emerging from a cross between a German (Sollux) and Chinese (Gaoyou) cultivars revealed one QTL for oil content on linkage group A1 (OilA1), which was mapped to a 17 cM genetic interval. To further validate and characterize the OilA1, we constructed a high-resolution map using B. rapa sequence resources and developed a set of near-isogenic lines (NILs) by employing a DH line SG-DH267 as donor and Chinese parent Gaoyou as recurrent background. The results showed highly conserved synteny order between B. rapa and B. napus within the linkage group A1 and revealed a possible centromere region between two markers ZAASA1-38 and NTP3 (2.5 cM). OilA1 was firstly validated by 250 BC5F2 plants and was confirmed in a 10.6 cM interval between the markers ZAASA1-47 and ZAASA1-77. Further substitution mapping was conducted by using two generations of QTL-NILs, 283 lines from eight BC5F3:4 families and 428 plants from six BC5F4 sub-NILs and thus narrowed the OilA1 interval to 6.9 cM and 4.3 cM (1.4 Mb), respectively. Field investigations with two replications using homozygous BC5F3:4 sister sub-NILs indicated that NILs, which carry a Sollux chromosome segment across the target region showed significant higher oil content (1.26 %, p < 0.001) than their sister NILs containing Gaoyou chromosome. The OilA1 locus is of particular interest for breeding purpose in China because 80 % of Chinese cultivars do not carry this desirable allele.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alfares W, Bouguennec A, Balfourier F, Gay G, Bergès H, Vautrin S, Sourdille P, Bernard M, Feuillet C (2009) Fine mapping and marker development for the crossability gene SKr on chromosome 5BS of hexaploid wheat (Triticum aestivum L.). Genetics 183:469–481

    Article  PubMed  CAS  Google Scholar 

  • Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros C, Sadowski J (2003) Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: complexity of the comparative map. Mol Genet Genomics 268:656–665

    PubMed  CAS  Google Scholar 

  • Burns M, Barnes S, Bowman J, Clarke M, Werner C, Kearsey M (2003) QTL analysis of an intervarietal set of substitution lines in Brassica napus:(i) Seed oil content and fatty acid composition. Heredity 90:39–48

    Article  PubMed  CAS  Google Scholar 

  • Bryman A (2012) Social research methods. 4th edn. Oxford University Press, Oxford

  • Chen G, Geng J, Rahman M, Liu X, Tu J, Fu T, Li G, McVetty PBE, Tahir M (2010) Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus). Euphytica 175:161–174

    Article  CAS  Google Scholar 

  • Cheng F, Liu S, Wu J, Fang L, Sun S, Liu B, Li P, Hua W, Wang X (2011) BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biol 11:136. doi:10.1186/1471-2229-11-136

    Article  PubMed  CAS  Google Scholar 

  • Delourme R, Falentin C, Huteau V, Clouet V, Horvais R, Gandon B, Specel S, Hanneton L, Dheu JE, Deschamps M, Margale E, Vincourt P, Renard M (2006) Genetic control of oil content in oilseed rape (Brassica napus L.). Theor Appl Genet 113:1331–1345

    Article  PubMed  CAS  Google Scholar 

  • Ecke W, Uzunova M, Weissleder K (1995) Mapping the genome of rapeseed (Brassica napus L.). II. Localization of genes controlling erucic acid synthesis and seed oil content. Theor Appl Genet 91:972–977

    CAS  Google Scholar 

  • Ganal MW, Young ND, Tanksley SD (1989) Pulsed field gel electrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome 9 in tomato. Mol Gene Genomics 215:395–400

    CAS  Google Scholar 

  • Jakobson I, Reis D, Tiidema A, Peusha H, Timofejeva L, Valárik M, Kladivová M, Simková H, Doležel J, Järve K (2012) Fine mapping, phenotypic characterization and validation of non-race-specific resistance to powdery mildew in a wheat-Triticum militinae introgression line. Theor Appl Genet 125:609–623

    Article  PubMed  Google Scholar 

  • Jiao Y, Wang Y, Xue D, Wang J, Yan M, Liu G, Dong G, Zeng D, Lu Z, Zhu X (2010) Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42:541–544

    Article  PubMed  CAS  Google Scholar 

  • Li J, Thomson M, McCouch SR (2004) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195

    Article  PubMed  CAS  Google Scholar 

  • Lincoln SE, Daly MJ, Lander ES (1993) Constructing genetic linkage maps with MAPMAKER/EXP version 3.0: a tutorial and reference manual. A Whitehead Institute for Biomedical Research Technical Report, 3rd edn. Whitehead Institute for Biomedical Research, Cambridge

  • Liu R, Jia H, Cao X, Huang J, Li F, Tao Y, Qiu F, Zheng Y, Zhang Z (2012) Fine mapping and candidate gene prediction of a pleiotropic quantitative trait locus for yield-related trait in Zea mays. PLoS One 7:e49836. doi:10.1371/journal.pone.0049836

    Article  PubMed  CAS  Google Scholar 

  • Lombard V, Delourme R (2001) A consensus linkage map for rapeseed (Brassica napus L.): construction and integration of three individual maps from DH populations. Theor Appl Genet 103:491–507

    Article  CAS  Google Scholar 

  • Mika V, Nerusil P, Koprna R, Kucera V (2003) Fast prediction of quality parameters in whole seeds of oilseed rape (Brassica napus). Plant Soil Environ 49:141–145

    Google Scholar 

  • Panjabi P, Jagannath A, Bisht NC, Padmaja KL, Sharma S, Gupta V, Pradhan AK, Pental D (2008) Comparative mapping of Brassica juncea and Arabidopsis thaliana using Intron Polymorphism (IP) markers: homoeologous relationships, diversification and evolution of the A, B and C Brassica genomes. BMC genomics 9:113. doi:10.1186/1471-2164-9-113

    Article  PubMed  Google Scholar 

  • Parkin IAP, Lydiate D, Trick M (2002) Assessing the level of collinearity between Arabidopsis thaliana and Brassica napus for A. thaliana chromosome 5. Genome 45:356–366

    Article  PubMed  CAS  Google Scholar 

  • Parkin IAP, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed  CAS  Google Scholar 

  • Qiu D, Morgan C, Shi J, Long Y, Liu J, Li R, Zhuang X, Wang Y, Tan X, Dietrich E, Weihmann T, Everett C, Vanstraelen S, Beckett P, Fraser F, Trick M, Barnes S, Wilmer J, Schmidt R, Li J, Li D, Meng J, Bancroft I (2006) A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content. Theor Appl Genet 114:67–80

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti C, Dias NE, Simpson A (1994) Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17:914–921

    PubMed  CAS  Google Scholar 

  • Sun M, Hua W, Liu J, Huang S, Wang X, Liu G, Wang H (2012a) Design of New genome-and gene-sourced primers and identification of QTL for seed oil content in a specially high-oil Brassica napus cultivar. PLoS One 7:e47037. doi:10.1371/journal.pone.0047037

    Article  PubMed  CAS  Google Scholar 

  • Sun ZY, Cheng S, Wang JB, Huang JX, Chen F, Ni XY, Zhao JY (2012b) Validation of QTL for oil content in a population of worldwide rapeseed cultivars by association analysis. Scientia Agricultura Sinica 45:3921–3931

    CAS  Google Scholar 

  • Tanksley S, Nelson J (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Wang J, Lydiate DJ, Parkin IAP, Falentin C, Delourme R, Carion PWC, King GJ (2011) Integration of linkage maps for the Amphidiploid Brassica napus and comparative mapping with Arabidopsis and Brassica rapa. BMC genomics 12:101

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Maehara T, Shimokawa T, Yamamoto S, Harada C, Takazaki Y, Ono N, Mukai Y, Koike K, Yazaki J, Fujii F, Shomura A, Ando T, Kono I, Waki K, Yamamoto K, Yano M, Matsumoto T, Sasaki T (2002) A comprehensive rice transcript map containing 6591 expressed sequence tag sites. Plant Cell 14:525–535

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Song MH, Jin F, Ahn SN, Suh JP, Hwang HG, McCouch S (2006) Fine mapping of a grain weight quantitative trait locus on rice chromosome 8 using near-isogenic lines derived from a cross between Oryza sativa and Oryza rufipogon. Theor Appl Genet 113:885–894

    Article  PubMed  CAS  Google Scholar 

  • Xing Y, Tang W, Xue W, Xu C, Zhang Q (2008) Fine mapping of a major quantitative trait loci, qSSP7, controlling the number of spikelets per panicle as a single Mendelian factor in rice. Theor Appl Genet 116:789–796

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Martin B, Comstock JP, Vision TJ, Tauer CG, Zhao B, Pausch RC, Knapp S (2008) Fine mapping a QTL for carbon isotope composition in tomato. Theor Appl Genet 117:221–233

    Article  PubMed  CAS  Google Scholar 

  • Yan XY, Li JN, Fu FY, Jin MY, Chen L, Liu LZ (2009) Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L. Euphytica 170:355–364

    Article  CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    PubMed  CAS  Google Scholar 

  • Zhang L, Li S, Chen L, Yang G (2012a) Identification and mapping of a major dominant quantitative trait locus controlling seeds per silique as a single Mendelian factor in Brassica napus L. Theor Appl Genet 125:695–705

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Brewer MT, van der Knaap E (2012b) Fine mapping of fw3. 2 controlling fruit weight in tomato. Theor Appl Genet 125:273–284

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Wang J, Huang J, Lan H, Wang C, Yin C, Wu Y, Tang H, Qian Q, Li J, Zhang H (2012c) Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA 109:21534–21539

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Becker HC, Zhang D, Ecke W, Zhang Y (2005) Oil Content in a European× Chinese rapeseed population. Crop Sci 45:51–59

    Article  CAS  Google Scholar 

  • Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W (2006) Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113:33–38

    Article  PubMed  CAS  Google Scholar 

  • Zhao JY, Ding Y, Xu F, Liu YX, Huang JX, Chen F, Ni XY (2011) Fine mapping of an oil content quantitative trait locus in the linkage group 7 of Brassica napus. In: Proceeding of 13th International Rapeseed Congress 124:953–956

  • Zhao J, Huang J, Chen F, Xu F, Ni X, Xu H, Wang Y, Jiang C, Wang H, Xu A, Huang R, Li D, Meng J (2012) Molecular mapping of Arabidopsis thaliana lipid-related orthologous genes in Brassica napus. Theor Appl Genet 124:407–421

    Article  PubMed  CAS  Google Scholar 

  • Zou J, Jiang C, Cao Z, Li R, Long Y, Chen S, Meng J (2010) Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping. Genome 53:908–916

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Christian Moellers (Georg-August-Universität Göttingen), Dr Amine Abbadi (Norddeutsche Pflanzenzucht Hans-Georg Lembke KG) and Dr. Yunhai Li (Chinese Academy of Sciences) for their critical reading of the manuscript. This research was financially supported by National Natural Science Foundation of China (No. 31171180), Zhejiang Provincial Natural Science Foundation of China (Z3100592) National High-tech R&D Program (2011AA10A104) and the project funded by Science Technology Department of Zhejiang Province (2011C12005, 2012C12902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianyi Zhao.

Additional information

Communicated by C. Quiros.

Y. B. Chen and L. Qi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Qi, L., Zhang, X. et al. Characterization of the quantitative trait locus OilA1 for oil content in Brassica napus . Theor Appl Genet 126, 2499–2509 (2013). https://doi.org/10.1007/s00122-013-2150-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2150-5

Keywords

Navigation